
Real-time Modeling and Software Framework for
Estimating Greenhouse Gas Emissions

Vineet Yadav
Jet Propulsion Laboratory,

California Institute of Technology
11/11/2015

Objectives
	
o  A software design framework for real-time measurement

and monitoring of greenhouse gas emissions
o  Carbon dioxide (CO2), Methane, Nitrous Oxide,

Chlorofluorocarbons etc.
o  Responsible for global climate change.
o  Primary focus in this presentation is on CO2

o  Provide insight into challenges associated with fulfilling
the primary goal of OCO2 satellite
o  Estimate fluxes of CO2

o  Computational challenges associated with modeling to get

estimates of greenhouse gas emissions

A software pipeline
	

		

Obs	
(XCO2)	

Models	 Unusual	
Pa4erns	 Maps	

Inverse Models

Measurements: Fluxes to Concentration (e.g. CO2)
	

		

Natural	CO2	
Fluxes	

CO2	FF	
Emission	

Transport
&	Mixing	

Atmospheric	
Measurements	

99.1 million metric tons of
CO2 (FF) released in
atmosphere in 2010 from LA county

Molecules of CO2
in Million Molecules
of Air (PPM)

Inversions: Concentrations to Fluxes

	

CO2 Concentrations

Inversions CO2
Emissions

Transport Model

εQ
Prior
Covariance

Prior

εR
Measurement
Covariance Moves Air with CO2

Molecules

Mean Natural and FF fluxes

Natural Fossil Fuel

Inverse Modeling Equation
	

		

L↓𝐬↓𝑏𝑖𝑜 , 𝐬↓𝑓𝑓  = 1/2 (𝒛−[𝐇↓𝑏𝑖𝑜 𝐬↓𝑏𝑖𝑜 + 𝐇↓𝑓𝑓 𝒔↓𝑓𝑓 ])↑T 𝐑↑−1 (𝒛−[𝐇↓𝑏𝑖𝑜 𝐬↓𝑏𝑖𝑜 +
𝐇↓𝑓𝑓 𝐬↓𝑓𝑓 ])+ 1/2 (𝐬↓𝑏𝑖𝑜 − 𝐬↓𝒑𝑏𝑖𝑜 )↑T 𝐐↓𝑏𝑖𝑜↑−1 (𝐬↓𝑏𝑖𝑜 − 𝐬↓𝒑𝑏𝑖𝑜 )+ 1/2 (𝐬↓𝑓𝑓 −
𝐬↓𝒑𝑓𝑓 )↑T 𝐐↓𝑓𝑓↑−1 (𝐬↓𝑓𝑓 − 𝐬↓𝑝𝑓𝑓 ) 	

𝐿↓𝐬 = 1/2 (𝒛−𝐇𝐬)↑T 𝐑↑−1 (𝒛−𝐇𝐬)+ 1/2 (𝐬− 𝐬↓𝑝 )↑T 𝐐↑−1 (𝐬−
𝐬↓𝑝 )	

CO2 Observations εR
Measurement
Covariance

εQ
Prior
Covariance

CO2
Emissions

Disaggregated Version

Transport Model

500 1000 1500 2000 2500

500

1000

1500

2000

2500

Measurements in Carbon Cycle Science: Fluxes to Concentration
	

		

Credits: Sha Feng (Penn State)

Complexity of Transport: Example of Los Angeles
	

		

Sparsity of Measurements: Example of Los Angeles
	

		

OCO2	Observa8ons	April	1	2015	Observa8ons	From	in-situ	Network	

o Underdetermined problem
o  Illposed-problem

 Computational Hurdles in Inverse Modeling	

		
o  Matrix Multiplication
o  Computation of Uncertainties
o  Solution of Linear Systems of Equations
o  Optimization of covariance parameters

The Matrix Multiplication Problem
	

		

o  ⏟𝚺 ┬PSD = ⏟𝐇↓(𝑛, 𝑚) ⏟𝐐↓(𝑚, 𝑚)  ┬PSD 𝐇↓(𝑚, 𝑛)↑𝑇  ┬PSD 	
o  Properties:

o  𝚺	is a symmetric matrix 	is a symmetric matrix
o  𝐇𝐐𝐇↑𝑇 is a symmetric matrix (𝐐 is symmetric) is symmetric)

o  Cost of Matrix Multiplication
o  ⏟⏟(𝐇↓(𝑛, 𝑚) 𝐐↓(𝑚, 𝑚) ) ┬O(𝑛↑3 ) 𝐇↓(𝑚, 𝑛)↑𝑇  ┬O(𝑛↑3 )

+O(𝑛↑3 ) 	
	

	
	

𝐿↓𝐬 = 1/2 (𝒛−𝐇𝐬)↑T 𝐑↑−1 (𝒛−𝐇𝐬)+ 1/2 (𝐬− 𝐬↓𝑝 )↑T 𝐐↑−1 (𝐬−
𝐬↓𝑝 )	

o  O(𝑛↑3 )>O(𝑛↑~2.80 )	> O(𝑛↑~2.37 ) [General MM]

 Naive Strassen Coppersmith-Winograd

o  Toeplitz/Vandermonde/Circulant/Hankel then MM is O(𝑛2
log 𝑛 ) operation

 O(𝑛↑3 )>O(𝑛↑~2.80 )	> O(𝑛↑~2.37 )> O(𝑛2log 𝑛 )

o  If a matrix is separable and symmetric matrix then MM O(𝑛2.5)

operation

o  O(𝑛↑3 )>O(𝑛↑~2.80 )>O(𝑛↑2.50 )> O(𝑛↑~2.37 )> O(𝑛2log 𝑛 )

Algorithms for Matrix Multiplication (MM)
	

		

Decomposition of the prior covariance matrix
	

		

o  Suppose there are two matrices :

𝐃↓(𝑝, 𝑞) =(█𝑑↓(1,1) &⋯&𝑑↓(1,𝑞) @⋮&⋱&⋮@𝑑↓(𝑝,1) &⋯&𝑑↓(𝑝,𝑞)  )𝐄↓(𝑟, 𝑡) =(█
𝑒↓(1,1) &⋯&𝑒↓(1,𝑡) @⋮&⋱&⋮@𝑒↓(𝑟,1) &⋯&𝑒↓(𝑟,𝑡)  )	

𝐐 =(█𝑑↓(1,1) 𝐄&⋯&𝑑↓(1,𝑞) 𝐄@⋮&⋱&⋮@𝑑↓(𝑝,1) 𝐄&⋯&𝑑↓(𝑝,𝑞) 𝐄 )	

o  Impose condition that 𝐐 is symmetric is symmetric

(𝐇𝐐)↓(𝑛, 𝑚) = 𝐇↓(𝑛, 𝑚) ⏟(⏟𝐃↓(𝑝, 𝑞)  
┬█𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒  ⊗ ⏟𝐄↓(𝑟, 𝑡)  
┬█𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒  ) ┬𝐐↓(𝑝𝑟, 𝑞𝑡=𝑚, 𝑚)  	

o  Symbolically, this matrix multiplication can be given as:	

Matrix multiplication with prior covariance matrix
	

		

o Definition of 𝑣𝑒𝑐 :	

𝐃↓(𝑝×𝑞) =(█𝑑↓(1,1) &⋯&𝑑↓(1,𝑞) 
@⋮&⋱&⋮@𝑑↓(𝑝,1) &⋯&𝑑↓(𝑝,𝑞)  )	

𝑣𝑒𝑐(𝐃)=(█𝑑↓(1,1) @⋮@█𝑑↓(𝑝,1) @𝑑↓(1,2) @█⋮@𝑑↓(𝑝,2) @█⋮@𝑑↓(𝑝,𝑞)     )	

o  (Modification) Identity for MM of 𝐇𝐐		

o  Computational cost for matrix multiplication of 𝐇𝐐 :	 :	

𝑣𝑒𝑐 [𝐇(𝐃⨂𝐄)] = (𝐈⨂𝐇) (𝑣𝑒𝑐(𝐃)⨂𝐄)	

𝐇𝐐↓𝑘𝑟𝑜𝑛 = ⏟⏞n{𝑝𝑟𝑞} ┴█𝑠𝑐𝑎𝑙𝑎𝑟𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛  + ⏞𝑞{(𝑝−1)𝑛𝑟} ┴█𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛   
+ ⏞𝑞{(2𝑟−1)𝑛𝑡} ┴█𝑀𝑎𝑡𝑟𝑖𝑥 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛    ┬O(𝑛↑2.50 ) 	

Matrix multiplication with prior covariance matrix II
	

		

o Multiplication of (𝐇𝐐) and 𝐇 ↑𝑇 

o Under Condition that 𝐐 is symmetric the product of (𝐇𝐐) and 𝐇 is symmetric the product of (𝐇𝐐) and 𝐇

↑𝑇  is symmetric

o Under these conditions overall cost of computing 𝐇𝐐𝐇↑𝑇  is

 ~ O(𝑛↑2.5 + 𝑛↑2.81 /2 )
o  Cyclical permutation property: 𝐐𝐇↑𝑇  = [𝐇(𝐃↑𝑇 ⊗ 𝐄↑𝑇 )]↑𝑇 

o  Easily parallelizable, can be implemented within a Hadoop

machinery and the cost of storing 𝐐 is extremely low is extremely low

Matrix Multiplication Sparse-Sparse Case	

		

o  Consider that both 𝐇 and 𝐐 are sparse and 𝐐 are sparse are sparse

o  Goal is to compute product of 𝐇 and 𝐐 efficiently and 𝐐 efficiently efficiently

o  Sparse-Sparse matrix multiplication is notoriously hard to
optimize
o  Branch Mispredictions (if else statements)
o  Pre-fetching problems (Cache hierarchy)
o  low compute-to-memory ratio (more time spent in accessing memory)
o  irregular memory access patterns (jumps from row to row)

o  All existing algorithms are based on Gustavson’s 1978 algorithm
o Operational Algorithms:

o  Single Pass Algorithm
o  Dual Pass Algorithm

Matrix Multiplication Sparse-Sparse Case II	

		

•  Operational algorithms:
o  Matlab ; Single Pass; Non Parallel
o  Intel’s Math Kernel Library ; Double Pass; Parallel
o  NVIDIA CUBLAS (GPU’s) ; Double Pass; Parallel (Count of non-zeros

required)

•  Our Algorithm
o  Single Pass Parallel when output is a non-symmetric matrix
o  Single pass parallel when output is a symmetric matrix
o  Can work in various hybrid parallel modes i.e., MPI, OpenMP and GPU’s

•  Foundation of the algorithm
o  First predicts number of non-zeros in the output matrix based on vector-

vector multiplication and then distributes work across machines and
threads

Performance of sparse-sparse matrix multiplication	

		

o  Asymptotic complexity of sparse-sparse MM is assumption
specific.

o  CPU cycles, Time and Memory consumed in comparison to
Intel MKL

o  Machine specification:
o  Intel Xeon E5440 Harpertown 2.83 Ghz 12MB L2 Cache
o  Theoretical Gflops: 90.56 or 45.28

o 𝐺𝑓𝑙𝑜𝑝𝑠=𝐶𝑃𝑈 𝑆𝑝𝑒𝑒𝑑 𝑖𝑛 𝐺𝐻𝑧 × 𝐹𝑙𝑜𝑝𝑠/𝐻𝑧 	×
𝐶𝑜𝑟𝑒𝑠/𝑁𝑜𝑑𝑒 	×𝑁𝑜𝑑𝑒𝑠		

	

o  Test Case

o  Sparse matrices 𝐇↓(1000, 1000000) 𝐐↓(1000000,
1000) ~8.5 million non-zeros

Benchmarks for the test machine	

		

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

10
00
	

10
00
	

20
00
	

50
00
	

10
00
0	

15
00
0	

18
00
0	

20
00
0	

22
00
0	

25
00
0	

26
00
0	

27
00
0	

30
00
0	

35
00
0	

40
00
0	

45
00
0	

G
FL
O
PS
	

NO	OF	EQUATIONS	TO	SOLVE	

Linpack	Benchmark	

Our	Algorithm	 MKL	

CPU	cycles	 ~	227	billion	 ~	362	billion	

Time	Taken	for	Execu8on	 ~	28	seconds	 ~	42	seconds	

Peak	Memory	Consumed	 ~	2.450	Gb	 ~2.576	Gb	

Total	Memory	Consumed		 ~4.885	Gb	 ~3.190	Gb	

o  Linpack benchmarks

o  Performance of the algorithm (double precision)

Features of the sparse-sparse matrix multiplication algorithm	

		

o  Compute upper triangular or lower triangular portion of the
 output matrix
o  Return a dense matrix from sparse-sparse MM
o  Can analytically compute for non-zeros in the output matrix if
 you multiply a sparse matrix with a diagonal matrix
o  A double pass algorithm has been implemented that has same
 performance as Intel MKL

o  Further research:
o  Building a Roofline model outlining the performance of out

matrix multiplication algorithm

Summary and other areas of research	

		

Further Research	

o  Covariance Visualization
o  Anomaly Detection

	

		

x1
,	
y1	

x1
,y
2	

x1
,	
y3	

x1
,	
y5	

x1
,y
6	

x1
,y
7	

x1
,y
8	

x1
,	
y1	

x1
,	
y2	

x1
,	
y3	

x1
,	
y4	

x1
,	
y5	

x1
,	
y6	

x1
,y
7	

Covariance	Visualiza8on	

Climate Change: Anomaly Detection

Copyright 2015 California Institute of
Technology. U.S. Government sponsorship
acknowledged.

