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Objectives

o A software design framework for real-time measurement
and monitoring of greenhouse gas emissions

o Carbon dioxide (CO,), Methane, Nitrous Oxide,
Chlorofluorocarbons etc.

o Responsible for global climate change.
o Primary focus in this presentation is on CO,

o Provide insight into challenges associated with fulfilling
the primary goal ot OCO2 satellite

o Estimate fluxes of CO,

o Computational challenges associated with modeling to get
estimates of greenhouse gas emissions
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A software pipeline

Data
Sources

User
Control

. Data Carbon-Climate . L
Data Ingestion o , Visualization
System Assimilation Surveillance System
System System
Discov

Agents

Acquis
Agents

Metadata Data
Storage  Staging

Applications

Data
Storage

Applications

Data
Storage

Applications

Data
Storage

Inverse Models

Unusual
Patterns

Jet Propulsion Laboratory
California Institute of Technology

AP



Measurements: Fluxes to Concentration (e.g. CO2)
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Inversions: Concentrations to Fluxes

CO, Concentrations
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Inverse Modeling Equation
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Measurements in Carbon Cycle Science: Fluxes to Concentration
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Complexity of Transport: Example of Los Angeles
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Sparsity of Measurements: Example of Los Angeles

Observations From in-situ Network
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Computational Hurdles in Inverse Modeling

Matrix Multiplication
Computation of Uncertainties
Solution of Linear Systems of Equations

O
O
O
o Optimization of covariance parameters

Jp Jet Propulsion Laboratory

California Institute of Technology



The Matrix Multiplication Problem

LIs=1/2 (z—Hs)TT RT-1 (z—Hs)+1/2 (s—sdp )TT QT—1 (s—
sip)
o E-PSD =WHJ(72, m) WQl(m, m) —PSD Hd(m, n)T7 +PSD
o Properties:
o X 1S a symmetric matrix
o HQHT71s a symmetric matrix (Q 1s symmetric)

o Cost of Matrix Multiplication
o W(Hi(n, m) Qd(m, m) ) Onl3 )HI(m, n)T7 +0(n13)
+0(n73)
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Algorithms for Matrix Multiplication (MM)

o 0(n13)>0(n1~2.80) > 0(n1~2.37 ) [General MM]

.

Naive Strassen Coppersmith-Winograd

o Toeplitz/Vandermonde/Circulant/Hankel then MM is 0 (722
logn ) operation

O(n13 )>0(n1~2.80 ) > O0(nT~2.37 )= O(n2logn )

o |If a matrix 1s separable and symmetric matrix then MM 0(72.5)
operation
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o O(nl3 )>0(n1~2.80 )>0(n712.50 )> 0(n1~2.37 )= O(7n2logn
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Decomposition of the prior covariance matrix

O Suppose there are two matrices :

Di(p, g)=(BdI1,1) & &dl(1,q) @:&".& @di(p1) & - &di(p,q) )EL(r, t)=(H
el(1,1) &--&el(1,t) @:&-.& @el(r,1) & - &el(r,t) )

Q=011 E&-&Zd\(1,9) E@ & & @di(p1) E& - &d!l(p,q) E

o Impose condition that Q 1s symmetric

o Symbolically, this matrix multiplication can be given as:

HQ)(n, m)=Hi(n, m) ( D@ ¢q)

—Mtemporalcovariance @:El( 7, t)
—Mspatialcovariance ) —QJ(pr, gt=m, m)
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Matrix multiplication with prior covariance matrix
vec(D)=(Mdl(1,1) @ @Bdl(p1) @

o Definition of vec:

D(pxqg)=(Mdl(1,1) &--&di(1,q)
@:&.&@dl(pl) & -&di(p,q) )

o (Modification) Identity for MM of HQ
vec|[H(DQE)] = IQH) (vec(D)RE)

o Computational cost for matrix multiplication of HQ :

HQlkron= "hi{prq}--Bscalarmultiplication +" g{(p—1)nr} +BAddition
+"g{2r— 1772 t}--lMMatrixMultiplication 0 (nT2.50 )
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Matrix multiplication with prior covariance matrix I1I

o Multiplication of (HQ) and H 17

o Under Condition that Q is symmetric the product of (HQ) and H
17 1s symmetric

o Under these conditions overall cost of computing HQH?7 1s
~0(nT2.5+n72.81 /2)
o Cyclical permutation property: QHTZ = HD17 QET7)]IT

o Easily parallelizable, can be implemented within a Hadoop
machinery and the cost of storing Q is extremely low
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Matrix Multiplication Sparse-Sparse Case

o Consider that both H and Q are sparse

o Goal is to compute product of H .nd Q efficiently

O Sparse-Sparse matrix multiplication 1s notoriously hard to
optimize
o Branch Mispredictions (if else statements)
o Pre-fetching problems (Cache hierarchy)
o low compute-to-memory ratio (more time spent in accessing memory)

o Irregular memory access patterns (jumps from row to row)
o All existing algorithms are based on Gustavson’s 1978 algorithm

o Operational Algorithms:

o Single Pass Algorithm
o Dual Pass Algorithm
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Matrix Multiplication Sparse-Sparse Case 11

* Operational algorithms:
o Matlab ; Single Pass; Non Parallel
o Intel’s Math Kernel Library ; Double Pass; Parallel
o NVIDIA CUBLAS (GPUY%) ; Double Pass; Parallel (Count of non-zeros
required)
* Our Algorithm
o Single Pass Parallel when output is a non-symmetric matrix

o Single pass parallel when output is a symmetric matrix
o Can work in various hybrid parallel modes i.e., MPI, OpenMP and GPU’s

* Foundation of the algorithm

o First predicts number of non-zeros in the output matrix based on vector-
vector multiplication and then distributes work across machines and
threads
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Performance of sparse-sparse matrix multiplication

o Asymptotic complexity of sparse-sparse MM 1s assumption
specific.

o CPU cycles, Time and Memory consumed in comparison to
Intel MKL

o Machine specification:
o Intel Xeon E5440 Harpertown 2.83 Ghz 12MB L2 Cache
o Theoretical Gflops: 90.56 or 45.28

o Gflops=CPU Speed in GHz X Flops/Hz X
Cores/Node XNodes

o Test Case _
Jet Propulsion Laboratory
California Institute of Technology
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Benchmarks for the test machine

o Linpack benchmarks
Linpack Benchmark
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o Performance of the algorithm (double precision)

CPU cycles ~ 227 billion ~ 362 billion

Time Taken for Execution ~ 28 seconds ~ 42 seconds

Peak Memory Consumed ~ 2.450 Gb ~2.576 Gb

Total Memory Consumed ~4.885 Gb ~3.190 Gb Ision Laboratory

stitute of Technology



Features of the sparse-sparse matrix multiplication algorithm

o Compute upper triangular or lower triangular portion of the
output matrix

o Return a dense matrix from sparse-sparse MM

o Can analytically compute for non-zeros in the output matrix 1f
you multiply a sparse matrix with a diagonal matrix

o A double pass algorithm has been implemented that has same
performance as Inte]l MKL

o Further research:
o Building a Roofline model outlining the performance of out

matrix multiplication algorithm
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Summary and other areas of research




Further Research

o Covariance Visualization

O Anomaly Detection Ch@?te Change: Anomaly Detection

Covariance Visualization
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