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Objectives 
	
o  A software design framework for real-time measurement 

and monitoring of  greenhouse gas emissions 
o  Carbon dioxide (CO2), Methane, Nitrous Oxide, 

Chlorofluorocarbons etc.  
o  Responsible for global climate change. 
o  Primary focus in this presentation is on CO2 
 

o  Provide insight into challenges associated with fulfilling 
the primary goal of  OCO2 satellite 
o  Estimate fluxes of  CO2 

 
o  Computational challenges associated with modeling to get 

estimates of  greenhouse gas emissions 



A software pipeline 
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Measurements: Fluxes to Concentration (e.g. CO2) 
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Inversions: Concentrations to Fluxes 
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Inverse Modeling Equation 
	

		

​L↓​𝐬↓𝑏𝑖𝑜 , ​𝐬↓𝑓𝑓  = ​1/2 ​(𝒛−[​𝐇↓𝑏𝑖𝑜 ​𝐬↓𝑏𝑖𝑜 + ​𝐇↓𝑓𝑓 ​𝒔↓𝑓𝑓 ])↑T ​𝐑↑−1 (𝒛−[​𝐇↓𝑏𝑖𝑜 ​𝐬↓𝑏𝑖𝑜 + ​
𝐇↓𝑓𝑓 ​𝐬↓𝑓𝑓 ])+ ​1/2 ​(​𝐬↓𝑏𝑖𝑜 − ​𝐬↓𝒑𝑏𝑖𝑜 )↑T ​𝐐↓𝑏𝑖𝑜↑−1 (​𝐬↓𝑏𝑖𝑜 − ​𝐬↓𝒑𝑏𝑖𝑜 )+ ​1/2 ​(​𝐬↓𝑓𝑓 − ​
𝐬↓𝒑𝑓𝑓 )↑T ​𝐐↓𝑓𝑓↑−1 (​𝐬↓𝑓𝑓 − ​𝐬↓𝑝𝑓𝑓 ) 	

​𝐿↓𝐬 = ​1/2 ​(𝒛−𝐇𝐬)↑T ​𝐑↑−1 (𝒛−𝐇𝐬)+ ​1/2 ​(𝐬− ​𝐬↓𝑝 )↑T ​𝐐↑−1 (𝐬− ​
𝐬↓𝑝 )	
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Measurements in Carbon Cycle Science: Fluxes to Concentration 
	

		

Credits: Sha Feng (Penn State) 



Complexity of Transport: Example of Los Angeles 
	

		



Sparsity of Measurements: Example of Los Angeles 
	

		

OCO2	Observa8ons	April	1	2015	Observa8ons	From	in-situ	Network	

o Underdetermined problem 
o  Illposed-problem 



  Computational Hurdles in Inverse Modeling	

		
o  Matrix Multiplication  
o  Computation of  Uncertainties  
o  Solution of  Linear Systems of  Equations 
o  Optimization of  covariance parameters 



The  Matrix Multiplication Problem 
	

		

o  ​⏟𝚺 ┬PSD = ​⏟​𝐇↓(𝑛,   𝑚) ​⏟​𝐐↓(𝑚,   𝑚)  ┬PSD ​𝐇↓(𝑚,   𝑛)↑𝑇  ┬PSD 	
o  Properties:  

o  𝚺	is a symmetric matrix 	is a symmetric matrix 
o  ​𝐇𝐐𝐇↑𝑇 is a symmetric matrix (𝐐 is symmetric)  is symmetric) 

o  Cost of  Matrix Multiplication 
o  ​⏟​⏟(​𝐇↓(𝑛,   𝑚) ​𝐐↓(𝑚,   𝑚) ) ┬O(​𝑛↑3 ) ​𝐇↓(𝑚,   𝑛)↑𝑇  ┬O(​𝑛↑3 )

+O(​𝑛↑3 ) 	
	

	
	

​𝐿↓𝐬 = ​1/2 ​(𝒛−𝐇𝐬)↑T ​𝐑↑−1 (𝒛−𝐇𝐬)+ ​1/2 ​(𝐬− ​𝐬↓𝑝 )↑T ​𝐐↑−1 (𝐬− ​
𝐬↓𝑝 )	



o  O(​𝑛↑3 )>O(​𝑛↑~2.80 )	> O(​𝑛↑~2.37 ) [General MM] 







   Naive        Strassen     Coppersmith-Winograd




o  Toeplitz/Vandermonde/Circulant/Hankel then MM is O(𝑛2​
log ⁠𝑛 ) operation 

 
           O(​𝑛↑3 )>O(​𝑛↑~2.80 )	> O(​𝑛↑~2.37 )> O(𝑛2​log ⁠𝑛 ) 
 
o  If  a matrix is separable and symmetric matrix then MM O(𝑛2.5) 

operation 

o  O(​𝑛↑3 )>O(​𝑛↑~2.80 )>O(​𝑛↑2.50 )> O(​𝑛↑~2.37 )> O(𝑛2​log ⁠𝑛 )


Algorithms for Matrix Multiplication (MM) 
	

		



Decomposition of the prior covariance matrix 
	

		

o  Suppose  there are two matrices : 

​𝐃↓(𝑝,   𝑞) =(█​𝑑↓(1,1) &⋯&​𝑑↓(1,𝑞) @⋮&⋱&⋮@​𝑑↓(𝑝,1) &⋯&​𝑑↓(𝑝,𝑞)  )​𝐄↓(𝑟,   𝑡) =(█​
𝑒↓(1,1) &⋯&​𝑒↓(1,𝑡) @⋮&⋱&⋮@​𝑒↓(𝑟,1) &⋯&​𝑒↓(𝑟,𝑡)  )	

𝐐 =(█​𝑑↓(1,1) 𝐄&⋯&​𝑑↓(1,𝑞) 𝐄@⋮&⋱&⋮@​𝑑↓(𝑝,1) 𝐄&⋯&​𝑑↓(𝑝,𝑞) 𝐄 )	

o  Impose condition that 𝐐 is symmetric  is symmetric 

​(𝐇𝐐)↓(𝑛,   𝑚) = ​𝐇↓(𝑛,   𝑚) ​⏟(​⏟​𝐃↓(𝑝,   𝑞)  
┬█𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 ⁠𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒  ⊗ ​⏟​𝐄↓(𝑟,   𝑡)  
┬█𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ⁠𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒  ) ┬​𝐐↓(𝑝𝑟,   𝑞𝑡=𝑚,   𝑚)  	

o  Symbolically, this matrix multiplication can be given as:	



Matrix multiplication with prior covariance matrix 
	

		

o Definition of 𝑣𝑒𝑐 :	

​𝐃↓(𝑝×𝑞) =(█​𝑑↓(1,1) &⋯&​𝑑↓(1,𝑞) 
@⋮&⋱&⋮@​𝑑↓(𝑝,1) &⋯&​𝑑↓(𝑝,𝑞)  )	

𝑣𝑒𝑐(𝐃)=(█​𝑑↓(1,1) @⋮@█​𝑑↓(𝑝,1) @​𝑑↓(1,2) @█⋮@​𝑑↓(𝑝,2) @█⋮@​𝑑↓(𝑝,𝑞)     )	

o  (Modification) Identity for MM of 𝐇𝐐		

o  Computational cost for matrix multiplication of 𝐇𝐐 :	 :	

𝑣𝑒𝑐 [𝐇(𝐃⨂𝐄)] = (𝐈⨂𝐇) (𝑣𝑒𝑐(𝐃)⨂𝐄)	

​𝐇𝐐↓𝑘𝑟𝑜𝑛 = ​⏟​⏞n{𝑝𝑟𝑞} ┴█𝑠𝑐𝑎𝑙𝑎𝑟⁠𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛  + ​⏞𝑞{(𝑝−1)𝑛𝑟} ┴█𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛   
+ ​⏞𝑞{(2𝑟−1)𝑛𝑡} ┴█𝑀𝑎𝑡𝑟𝑖𝑥 ⁠𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛    ┬O(​𝑛↑2.50 ) 	



Matrix multiplication with prior covariance matrix II 
	

		

o Multiplication of (𝐇𝐐) and ​𝐇 ↑𝑇  
 
o Under Condition that 𝐐 is symmetric the product of  (𝐇𝐐) and ​𝐇  is symmetric the product of  (𝐇𝐐) and ​𝐇 

↑𝑇  is symmetric 
 
o Under these conditions overall cost of  computing ​𝐇𝐐𝐇↑𝑇  is  

   ~ O(​𝑛↑2.5 + ​​𝑛↑2.81 /2 ) 
o  Cyclical permutation property: ​𝐐𝐇↑𝑇  = ​[𝐇(​𝐃↑𝑇 ⊗ ​𝐄↑𝑇 )]↑𝑇  
 
o  Easily parallelizable, can be implemented within a Hadoop 

machinery and the cost of  storing  𝐐 is extremely low  is extremely low 



Matrix Multiplication Sparse-Sparse Case	

		

o  Consider that both 𝐇 and 𝐐 are sparse  and 𝐐 are sparse  are sparse 

o  Goal is to compute product of  𝐇 and 𝐐 efficiently  and 𝐐 efficiently  efficiently 

o  Sparse-Sparse matrix multiplication is notoriously hard to 
optimize 
o  Branch Mispredictions (if  else statements) 
o  Pre-fetching problems (Cache hierarchy) 
o  low compute-to-memory ratio (more time spent in accessing memory) 
o  irregular memory access patterns (jumps from row to row) 

o  All existing algorithms are based on Gustavson’s 1978 algorithm 
o Operational Algorithms: 

o  Single Pass Algorithm 
o  Dual Pass Algorithm  



Matrix Multiplication Sparse-Sparse Case II	

		

•  Operational algorithms: 
o  Matlab ; Single Pass; Non Parallel 
o  Intel’s Math Kernel Library ; Double Pass; Parallel 
o  NVIDIA CUBLAS (GPU’s) ; Double Pass; Parallel (Count of  non-zeros 

required) 

•  Our Algorithm 
o  Single Pass Parallel when output is a non-symmetric matrix 
o  Single pass parallel when output is a symmetric matrix 
o  Can work in various hybrid parallel modes i.e., MPI, OpenMP and GPU’s  

•  Foundation of  the algorithm 
o  First predicts number of  non-zeros in the output matrix based on vector-

vector multiplication and then distributes work across machines and 
threads 



Performance of sparse-sparse matrix multiplication	

		

o  Asymptotic complexity of  sparse-sparse MM is assumption 
specific.  

o  CPU cycles, Time and Memory consumed in comparison to 
Intel MKL  

o  Machine specification: 
o  Intel Xeon E5440 Harpertown 2.83 Ghz 12MB L2 Cache 
o  Theoretical Gflops: 90.56 or 45.28  

o 𝐺𝑓𝑙𝑜𝑝𝑠=𝐶𝑃𝑈 𝑆𝑝𝑒𝑒𝑑 𝑖𝑛 𝐺𝐻𝑧 × ​𝐹𝑙𝑜𝑝𝑠/𝐻𝑧 	× ​
𝐶𝑜𝑟𝑒𝑠/𝑁𝑜𝑑𝑒 	×𝑁𝑜𝑑𝑒𝑠		

	

o  Test Case 

o  Sparse matrices ​𝐇↓(1000,   1000000) ​𝐐↓(1000000,   
1000) ~8.5 million non-zeros 



Benchmarks for the test machine	
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NO	OF	EQUATIONS	TO	SOLVE	

Linpack	Benchmark	

Our	Algorithm	 MKL	

CPU	cycles	 ~	227	billion	 ~	362	billion	

Time	Taken	for	Execu8on	 ~	28	seconds	 ~	42	seconds	

Peak	Memory	Consumed	 ~	2.450	Gb	 ~2.576	Gb	

Total	Memory	Consumed		 ~4.885	Gb	 ~3.190	Gb	

o  Linpack benchmarks 

o  Performance of  the algorithm (double precision) 



Features of the sparse-sparse matrix multiplication algorithm	

		

o   Compute upper triangular or lower triangular portion of  the  
     output matrix 
o   Return a dense matrix from sparse-sparse MM 
o  Can analytically compute for non-zeros in the output  matrix if   
     you multiply a sparse matrix with a diagonal matrix  
o  A double pass algorithm has been implemented that has same  
     performance as Intel MKL 
 

o  Further research: 
o  Building a Roofline model outlining the performance of  out 

matrix multiplication algorithm 

     



Summary and other areas of research	

		



Further Research	

o  Covariance Visualization 
o  Anomaly Detection  
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Covariance	Visualiza8on	

Climate Change: Anomaly Detection 
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