Real-time Modeling and Software Framework for Estimating Greenhouse Gas Emissions

Vineet Yadav Jet Propulsion Laboratory, California Institute of Technology 11/11/2015

Objectives

- A software design framework for real-time measurement and monitoring of greenhouse gas emissions
 - Carbon dioxide (CO₂), Methane, Nitrous Oxide, Chlorofluorocarbons etc.
 - 0 Responsible for global climate change.
 - \circ Primary focus in this presentation is on CO_2
- Provide insight into challenges associated with fulfilling the primary goal of OCO2 satellite
 Estimate fluxes of CO2
- Computational challenges associated with modeling to get estimates of greenhouse gas emissions

A software pipeline

Measurements: Fluxes to Concentration (e.g. CO2)

Inversions: Concentrations to Fluxes

Mean Natural and FF fluxes

Inverse Modeling Equation

 $\begin{aligned} L \downarrow s \downarrow bio , s \downarrow ff = 1/2 (z - [H \downarrow bio s \downarrow bio + H \downarrow ff s \downarrow ff]) & \uparrow R \uparrow -1 (z - [H \downarrow bio s \downarrow bio + H \downarrow ff s \downarrow ff]) + 1/2 (s \downarrow bio - s \downarrow p bio) & \uparrow Q \downarrow bio \uparrow -1 (s \downarrow bio - s \downarrow p bio) + 1/2 (s \downarrow ff - s \downarrow p ff) & \uparrow T Q \downarrow ff \uparrow -1 (s \downarrow ff - s \downarrow p ff) \end{aligned}$

Measurements in Carbon Cycle Science: Fluxes to Concentration

Atmospheric CO2 Concentrations (parts per million) 2011-09-11 16:00:00 PST

380 390 400 410 420 430 440 450 460 470 480 490 500 510 520

Fossil Fuel CO2 Emissions (kilograms/hour) 2011-09-11 16:00:00 PST

Complexity of Transport: Example of Los Angeles

JPL Jet Propulsion Laboratory California Institute of Technology

Sparsity of Measurements: Example of Los Angeles

OCO2 Observations April 1 2015

O Underdetermined problemO Illposed-problem

Computational Hurdles in Inverse Modeling

- o Matrix Multiplication
- Computation of Uncertainties
- Solution of Linear Systems of Equations
- Optimization of covariance parameters

 $L \downarrow \mathbf{s} = 1/2 (\mathbf{z} - \mathbf{H}\mathbf{s}) \uparrow \mathbf{T} \mathbf{R} \uparrow -1 (\mathbf{z} - \mathbf{H}\mathbf{s}) + 1/2 (\mathbf{s} - \mathbf{s} \downarrow p) \uparrow \mathbf{T} \mathbf{Q} \uparrow -1 (\mathbf{s} - \mathbf{s} \downarrow p)$

- $\sum_{n} \mathbf{\Sigma} PSD = \mathbf{H} \mathbf{I}(n, m) \mathbf{Q} \mathbf{I}(m, m) PSD \mathbf{H} \mathbf{I}(m, n) \uparrow T PSD$ • Properties:
 - Σ is a symmetric matrix
 - HQH17 is a symmetric matrix (Q is symmetric)
- Cost of Matrix Multiplication
 - $\circ \prod_{n \neq \infty} (\mathbf{H} \mathbf{J}(n, m) \mathbf{Q} \mathbf{J}(m, m)) 0(n^{2} \mathbf{J}) \mathbf{H} \mathbf{J}(m, n) \uparrow T 0(n^{2} \mathbf{J})$ + $0(n^{2} \mathbf{J})$

Algorithms for Matrix Multiplication (MM)

• $0(n^{13}) > 0(n^{1} \sim 2.80) > 0(n^{1} \sim 2.37)$ [General MM]

Naive Strassen Coppersmith-Winograd

Toeplitz/Vandermonde/Circulant/Hankel then MM is 0(n2 logn) operation

 $0(n^{13}) > 0(n^{1} \sim 2.80) > 0(n^{1} \sim 2.37) > 0(n^{2} \log n)$

- If a matrix is separable and symmetric matrix then MM 0(n2.5) operation
- $\circ 0(n^{13}) > 0(n^{1} \sim 2.80) > 0(n^{1} \sim 2.50) > 0(n^{1} \sim 2.37) > 0(n^{2} \log n)$

Decomposition of the prior covariance matrix

• Suppose there are two matrices :

 $\mathbf{D}\mathcal{I}(p, q) = (\blacksquare d\mathcal{I}(1,1) \& \cdots \& d\mathcal{I}(1,q) @ : \& \ddots \& : @ d\mathcal{I}(p,1) \& \cdots \& d\mathcal{I}(p,q)) \mathbf{E}\mathcal{I}(r, t) = (\blacksquare e\mathcal{I}(1,1) \& \cdots \& e\mathcal{I}(1,t) @ : \& \ddots \& : @ e\mathcal{I}(r,1) \& \cdots \& e\mathcal{I}(r,t))$

 $\mathbf{Q} = (\blacksquare d \downarrow (1,1) \mathbf{E} \& \cdots \& d \downarrow (1,q) \mathbf{E} @ \& \ddots \& @ d \downarrow (p,1) \mathbf{E} \& \cdots \& d \downarrow (p,q) \mathbf{E}$

• Impose condition that **Q** is symmetric

• Symbolically, this matrix multiplication can be given as: $(\mathbf{HQ})\mathbf{i}(n, m) = \mathbf{H}\mathbf{i}(n, m)$ ($\mathbf{D}\mathbf{i}(p, q)$ $-\mathbf{I}$ temporalcovariance $\bigotimes \mathbf{E}\mathbf{i}(r, t)$ $-\mathbf{I}$ spatialcovariance) $-\mathbf{Q}\mathbf{i}(pr, qt=m, m)$

Matrix multiplication with prior covariance matrix

 $vec(\mathbf{D}) = (\blacksquare d\downarrow (1,1) @ : @ \blacksquare d\downarrow (p,1) @ d$

• Definition of *vec*:

 $\mathbf{D}\mathcal{I}(p \times q) = (\blacksquare d\mathcal{I}(1,1) \& \cdots \& d\mathcal{I}(1,q) \\ @:\& \ddots \&: @d\mathcal{I}(p,1) \& \cdots \& d\mathcal{I}(p,q))$

(Modification) Identity for MM of HQ

 $vec[\mathbf{H}(\mathbf{D}\otimes\mathbf{E})] = (\mathbf{I}\otimes\mathbf{H}) (vec(\mathbf{D})\otimes\mathbf{E})$

• Computational cost for matrix multiplication of **HQ** :

- \circ Multiplication of (HQ) and H $\it TT$
- Under Condition that **Q** is symmetric the product of (**HQ**) and **H** *T* is symmetric
- Under these conditions overall cost of computing HQH17 is ~ 0(n12.5 + n12.81 /2)
 Cyclical permutation property: QH17 = [H(D17⊗E17)]17
- Easily parallelizable, can be implemented within a Hadoop machinery and the cost of storing **Q** is extremely low

Matrix Multiplication Sparse-Sparse Case

- $\circ\,$ Consider that both H and Q are sparse
- \circ Goal is to compute product of **H** and **Q** efficiently
- Sparse-Sparse matrix multiplication is notoriously hard to optimize
 - Branch Mispredictions (if else statements)
 - Pre-fetching problems (Cache hierarchy)
 - o low compute-to-memory ratio (more time spent in accessing memory)
 - irregular memory access patterns (jumps from row to row)
- All existing algorithms are based on Gustavson's 1978 algorithm
- 0 Operational Algorithms:
 - o Single Pass Algorithm
 - Dual Pass Algorithm

Matrix Multiplication Sparse-Sparse Case II

- Operational algorithms:
 - Matlab ; Single Pass; Non Parallel
 - 0 Intel's Math Kernel Library ; Double Pass; Parallel
 - NVIDIA CUBLAS (GPU's) ; Double Pass; Parallel (Count of non-zeros required)
- Our Algorithm
 - Single Pass Parallel when output is a non-symmetric matrix
 - Single pass parallel when output is a symmetric matrix
 - Can work in various hybrid parallel modes i.e., MPI, OpenMP and GPU's
- Foundation of the algorithm
 - First predicts number of non-zeros in the output matrix based on vectorvector multiplication and then distributes work across machines and threads

Performance of sparse-sparse matrix multiplication

- Asymptotic complexity of sparse-sparse MM is assumption specific.
- CPU cycles, Time and Memory consumed in comparison to Intel MKL
- Machine specification:
 - 0 Intel Xeon E5440 Harpertown 2.83 Ghz 12MB L2 Cache
 - Theoretical Gflops: 90.56 or 45.28

Gflops=CPU Speed in GHz×Flops/Hz ×
 Cores/Node ×Nodes

1000000)

et Propulsion Laboratory alifornia Institute of Technology

o Test Case

H/(1000)

Linpack benchmarks

Linpack Benchmark

NO OF EQUATIONS TO SOLVE

• Performance of the algorithm (double precision)

	Our Algorithm	MKL
CPU cycles	~ 227 billion	~ 362 billion
Time Taken for Execution	~ 28 seconds	~ 42 seconds
Peak Memory Consumed	~ 2.450 Gb	~2.576 Gb
Total Memory Consumed	~4.885 Gb	~3.190 Gb

Ision Laboratory stitute of Technology

Features of the sparse-sparse matrix multiplication algorithm

- Compute upper triangular or lower triangular portion of the output matrix
- Return a dense matrix from sparse-sparse MM
- Can analytically compute for non-zeros in the output matrix if you multiply a sparse matrix with a diagonal matrix
- A double pass algorithm has been implemented that has same performance as Intel MKL

• Further research:

 Building a Roofline model outlining the performance of out matrix multiplication algorithm

Summary and other areas of research

Further Research

o Covariance Visualizationo Anomaly Detection

Climate Change: Anomaly Detection

. . . .

Copyright 2015 California Institute of Technology. U.S. Government sponsorship acknowledged.