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ABSTRACT

This paper presents a new application of statistical methods for identifying the various surface structures
on the Sun that may contribute to observed changes in total and spectral solar irradiance. These structures
are divided for our purposes into three types: quiet Sun, faculae, and sunspots (umbra and penumbra). Each
region type is characterized by the observed data present at pixels of that type. Statistical models characteriz-
ing these observables are found from expert identification of a sample set of regions or unsupervised cluster-
ing. Information about the spatial continuity of regions is incorporated into the model via a prior
distribution on the label image; the contribution of the prior can be interpreted as a regularizing term. Once
the parameters defining the models are fixed, the inference procedure becomes to maximize the probability of
an image labeling given the observed data. This allows objective and automated classification of a large set of
images. We describe the application of these procedures to computing labelings from synchronized full-disk
high-resolution magnetic-field and light-intensity maps from the Michelson Doppler Imager experiment on
the Solar and Heliospheric Observatory.

Subject headings:methods: analytical — methods: statistical — Sun: activity — Sun: faculae, plages —
sunspots

1. INTRODUCTION

Study of the Sun’s variability has been of high importance
for both astrophysics and solar-terrestrial physics. The Sun,
a fairly typical star, has the special advantage of proximity,
which allows the detailed study of a variety of phenomena
important for stellar physics. High-precision photometric
observations of solar-type stars clearly show that year-to-
year brightness variations connected with magnetic activity
are a widespread phenomenon among such stars (e.g., Rad-
ick 1994). Space-borne irradiance observations over the last
2 decades have demonstrated that solar irradiance, both
bolometric and at various wavelengths, varies during the
course of the 11 year solar cycle (Fröhlich 1998). Since solar
energy sustains the life on Earth and is the ultimate driving
force for terrestrial climate, it is inescapable that we must
understand why, how, and on what timescale the solar irra-
diance varies to better understand the role of solar variabil-
ity in climatic changes.

Analyses based on 2 decade long space irradiance meas-
urements have revealed that the surface manifestations of
solar magnetic activity play an important role in solar irra-
diance changes (Lean et al. 1998). On the other hand, sev-
eral studies have shown that current irradiance models,
solely based on the effect of surface magnetic activity, can-
not explain all the aspects of irradiance changes (Kuhn
1996; Fröhlich et al. 1997; Pap 1997). Unfortunately, identi-
fication of the cause of this residual variability is a difficult

problem. Hints from helioseismology (Kuhn et al. 1998)
and from precise photometry by the Variability of Irradi-
ance and Gravity Oscillations (VIRGO) and Michelson
Doppler Interferometer (MDI) experiments on the Solar
and Heliospheric Observatory (SOHO) indicate that global
effects—changes in the photospheric temperature, large-
scale mixing flows or convective cells, and radius fluctua-
tions, can all produce changes in solar irradiance. Nonethe-
less, it is essential to clarify to what degree the observed
irradiance changes are related to surface and global effects,
respectively. While studying the role of global effects in irra-
diance changes is not an easy and straightforward task,
there are thousands of solar images whose analysis enables
us to study the contribution of surface magnetic activity to
irradiance changes in great detail. To understand the physi-
cal causes of the changes observed in total and spectral solar
irradiances, it is necessary to study the spatial characteristics
and temporal evolution of the solar magnetic fields and
related thermal structures in the various layers of the solar
atmosphere.

One of the largest obstacles to the use of this body of solar
imagery is the amount of time and effort required to analyze
it carefully. Simple manual cataloging techniques do not
scale to years-long time intervals: for example, the study
reported here covers the interval from 1996 July to 1997
September and uses about 104 solar images. In order to
speed up the scientific investigation process, we have devel-
oped a system for the automated processing and analysis of
various images available from space and the ground. Its
core is a Bayesian image-segmentation technique driven by
statistical models trained from scientist-provided image

1 Also at Goddard Earth Sciences and Technology Center, NASA God-
dard Space Flight Center, Greenbelt, MD 20771.

The Astrophysical Journal, 568:396–407, 2002March 20

# 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.

396



labelings. Once these models are selected, labeling proceeds
automatically. Models, written down in a portable defini-
tion format, can be refined over time or exchanged between
observation programs. These models allow the controlled
introduction of physical knowledge of the characteristics of
the activity types of interest (Turmon & Pap 1997). While
we have used the SOHO=MDI images as a testing ground
for these methods, the fundamental approach described
here accommodates other data sources (e.g., Ca iiK images)

and, in particular, allows the use of more wavelengths with-
out modification.

Several groups are conducting work along similar lines.
Bratsolis & Sigelle (1998) use similar computational machi-
nery for smoothing image labelings but do not directly link
image labels to physical classes. A major practical benefit
offered by the methods we advocate is the ability to integrate
the information from several images; much region identifi-
cation work to date has proceeded from just one image

Fig. 1.—Top: Near-simultaneous magnetogram and photogram, with some contrast enhancement. Bottom: Corresponding scatter plot and rough per-pixel
labeling.

Fig. 2.—Data flow used to preprocess photograms andmagnetograms in preparation for feature identification
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source. Worden, White, & Woods (1998) produce labelings
from Ca iiK spectroheliograms by taking account of spatial
structures such as contiguity and filling factors; the latter is
similar to our idea of a ‘‘ dominant process ’’ (see x 4). Har-
vey &White (1999) find spatial structures in magnetograms,
and their analysis links magnetic and intensity features,
although their labelings do not do so explicitly. Fligge, Sol-
anki, & Unruh (2000) also consider region identification
based on MDI magnetograms. Several observatories have
well-calibrated and regular image-analysis operations (see
Walton et al. 1998; Steinegger, Bonet, & Vasquez 1997; Stei-
negger et al. 1998).

We note that whereas our earlier work (Pap et al. 1997)
used only magnetic-field observations from MDI, the
present study uses both full-disk (10242 pixels) magneto-
grams, taken approximately every 96 minutes, and quasi
white-light photograms, which are taken roughly once every
360 minutes. For our purposes, it is important to distinguish
further between the 1 and 5 minute magnetogram integra-
tion times used byMDI, as these produce images having dif-
ferent noise characteristics. All these images are taken by
MDI with a CCD camera near the Ni i 676.8 nm absorption
line originating in the midphotosphere (Scherrer et al.
1995). We use the level 1.5 MDI imagery throughout; mag-
netic strengths are given in units of MDI nominal Gauss,
while photograms are given in arbitrary units referenced to
a quiet-Sun level of 1000.

We first describe this image processing technique and its
application to the MDI photograms and magnetograms in
detail. This must, of necessity, include the preprocessing
steps that remove certain persistent instrumental artifacts
from the magnetograms and photograms. The centerpiece
of this paper is the description of the statistical machinery
needed to find these image structures. We conclude by set-
ting out how this machinery is tuned for the MDI imagery
and giving sample results illustrating the characteristics of
the derived labelings. In a companion paper, we compare
the time series of the various activity components with the
SOHO=VIRGO total and spectral irradiances in the near-
UV at 402 nm, visible at 500 nm, and near-IR at 862 nm. In
addition to the VIRGO data, we will also study the effect of
various activity components on the EUV and XUV mea-
sured by SOHO’s Charges, Elements and Isotopes Analysis
System (CELIAS) and Solar EUVMonitor (SEM), and also
on the Mg ii h and k core-to-wing ratio from the Solar
Ultraviolet Spectral Irradiance Monitor (SUSIM) aboard
theUpper Atmosphere Research Satellite (UARS).

2. BASIS FOR IMAGE SEGMENTATION

Figure 1 illustrates the potential of the MDI data for
extracting active regions from solar images. The top panels
show details from a 1 minute magnetogram and a flat-
fielded photogram that happened to be taken 6.0 minutes
apart by MDI at 4:15 UT on 1996 August 1. (A separation
of 6 minutes implies a relative displacement of less than half
a pixel at disk center.) The activity shows clearly on the cor-
responding scatter plot (bottom left panel); this plot is of
fundamental interest because the statistical models we build
will model the probability density function in this feature
vector representation. In fact, as demonstrated in Figure 1,
the umbra and penumbra can be separated at the knee of
the two-dimensional scatter plot (see especially the bottom
right panel). We also note that magnetic fields of about

�200 G may produce either sunspots or faculae; a two-
parameter observation is therefore crucial to reliably sepa-
rate these features. The crude labeling in the bottom right
panel corresponds to a simple thresholding of these bivari-
ate data, ignoring all spatial relationships. (We use per-pixel
thresholding for inspection here but do not advocate it as a
general labeling technique.) The spatial coherence of the re-
solved structures is apparent.

Generally speaking, these images show a wide variety of
solar structures: active regions (sunspots and faculae), rem-
nants of active regions, and the active network and the rela-
tively quiet network that are distributed as cell-like
structures over the solar disk. For the purposes of this anal-
ysis, we have concentrated on three specific structures: sun-
spot umbra and penumbra, faculae, and background (the
so-called quiet Sun=network). These structures are rela-
tively easy to identify directly in sample images, which facili-
tates model selection. Decomposition into more classes
could be more informative about solar processes, but only
to the extent that the extra classes indeed represent distinct
physical processes.

Inferring structural properties from these observations
requires a uniform, automated technique whose parameters
have been determined objectively to the greatest extent pos-
sible. We can formalize the procedure illustrated above—in
particular, generalizing to the case of nonsynchronous mag-
netograms and photograms—as in Figure 2:

1. Temporally correct and flat field a photogram.
2. Interpolate a magnetogram to the photogram obser-

vation time.
3. Infer the labeling from the magnetogram and photo-

gram.

Before going on to detail these procedures, we introduce
some notation. Images are collected by sampling in a time t
and in a spatial variable s ¼ ½s1; s2� indexing the image
plane; the set of all such discrete spatial sites is S. A single
pixel’s observable feature vector is y ¼ ½y1; . . . ; yd � 2 Rd ;
such vectors are grouped into an image y indexed by s. A
decomposition of an image into K classes is captured by
defining a labeling x of integers in f1; . . . ;Kg for each image
pixel s 2 S. When discussing the MDI imagery, the mag-
netic field observable is generically denoted y1, while the
intensity is y2; these are seen as full images (magnetograms
and photograms) y1 and y2. We use an observer-centered
frame in which the s1 coordinate increases toward solar east
and s2 increases toward solar north.

3. PREPROCESSING AND SYNCHRONIZATION

We begin with a photogram at a given time t0. Ensuring
the immunity of all preprocessing steps to changing solar
activity is paramount due to their use in irradiance study.
This temporal stability is crucial to eliminating side effects
from the final region maps. Where possible, we have there-
fore tabulated smoothly varying correction factors across
the interval under study (1996 July–1997 September) rather
than using a fully image-by-image system.

First, we note that instrument throughput drops linearly
with time and exhibits jumps due to instrument focus, orien-
tation, and configuration (Bogart, Bush, & Wolfson 1998).
These effects are partially removed from the level 1.5 data
that we use; the remainder are taken out by dividing the
whole image by a nominal throughput. This factor is pre-

398 TURMON, PAP, & MUKHTAR Vol. 568



dominantly linear in time, with breaks at several points
when the instrument was recalibrated. The factor is deter-
mined separately for each image by taking the median of
448 medians within 32� 32 pixel blocks; this level is defined
as the quiet Sun.

In removing center-to-limb variation, it becomes impor-
tant to take into account the slight ellipticity of the MDI
photograms due to instrumental effects (e.g., Kuhn et al.
1998). We do this by defining an effective radius from the
image center s� via r2eff ¼ ðs� s�ÞTRT

� DR�ðs� s�Þ, where

R� ¼
cos � � sin �

sin � cos �

� �
;

D ¼
0:9981 0

0 1:0000

� �
;

and � ¼ 30=5. The ellipticity correction remains constant
over the time interval studied. It corresponds to a stretching
of the image along a major axis tilted 30=5 south of solar
west and a peak-to-peak scale variation of 1>0 around the
solar limb; this agrees with Figure 1 in the paper of Kuhn et
al. (1998). This effective radius, at most R�, is used to find
l ¼ ½1� ðreff=R�Þ2�1=2. Center-to-limb variation is then
removed via an adaptation of the median-based procedure
of Brandt & Steinegger (1998), yielding a correction factor

LDðlÞ ¼ 1þ
X4

1
�kðlog lÞk ifl � 0:05;

0:2� l 0:2� LDð0:05Þ½ �=0:05 otherwise;

(

where

�1 ¼ 0:44814; �2 ¼ 0:13719;

�3 ¼ 0:02119; �4 ¼ 0:00027:

Fig. 3.—Preprocessed magnetogram and photogram from 1997 September 7, with scatter plots of sites within the two indicated regions
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The correction for low l overrides irregularities in the poly-
nomial there with a linear drop to LDð0Þ ¼ 0:2. The func-
tion agrees with that of Bogart et al. (1998) to within 0.7%
for l � 0:2. Both the ellipticity and LDð� � �Þ are stable
across the time interval studied here.

Another form of distortion present in these images is the
leakage of the Doppler signal into the intensity. This is
removed by dividing by a factor 1þ �vs depending on the
(spatially varying) relative motion vs of the Sun and the
MDI. The Doppler correction coefficient � varies slowly
over time due to instrument configuration changes; the cor-
rect value for a given time is tabulated. Finally, a small
residual flat field (accounting for roughly 1.0% spatial varia-
tion) is applied. This flat field also changes slowly over time;
however, it is found separately for each image using a
blocked median filter. The result is a spatially and tempo-
rally uniform photogram y2.

This photogram y2 is used with a magnetogram interpo-
lated between two existing magnetograms as follows. First,
the nearest bracketing magnetograms are found. (There are
two exposure intervals, 1 and 5 minutes; both magneto-
grams must be of the same type.) These are preprocessed to
remove temporal effects: since magnetograms are computed
as a difference of channels, they are mostly immune to them.
However, temporal normalization is still needed to remove
an offset of about �0.4 G that affects 5 minute magneto-
grams taken in 1997 April–November (J. T. Hoeksema
1999, private communication). Next, standard formulas
(Zappalá & Zuccarello 1991) for the latitude-dependent
angular velocity of active regions in the photosphere,

� ¼ 14:643� 2:2407 sin2 � deg day�1;

are used to synthesize a magnetogram at t0 from each brack-
eting magnetogram. Sunspot age, which we do not account
for, changes � by about �0=3 day�1. A 240 minute rotation
to find a nearby image (needed by less than 1% of the MDI
photograms we labeled) corresponds to a movement of
about 18 MDI pixels at disk center. An error in � of 0=5
day�1 over 240 minutes corresponds to a displacement of
about half a pixel at disk center, which is negligible.

The two magnetograms are merged by taking as many
pixels as possible from the nearer image and the remaining
ones from the more distant one. (Averaging, or weighted
averaging, would change the image statistics by lowering
noise and is therefore not used in the merge.) The synthe-
sized magnetogram y1 and the flattened photogram y2 are
now combined into y and used to infer a labeling. Figure 3
shows results from the interpolation process. The top two
panels are details from a magnetogram and a photogram;
the photogram was taken at 17:58 UT on 1997 September 7
and preprocessed as outlined above. The magnetogram has
been synthesized from bracketing 1 minute magnetograms
taken at 6:24 and 19:11 UT on that day. The regions are
25500 � 72500. These observation times imply a minimum
rotation of 73 minutes; over the time interval studied, 80%
of photograms had usable magnetograms closer than this.
The scatter plots of ys for the two indicated subregions are
in the bottom panels. (Quantization of the MDI magneto-
gram is visible in the right panel.) The bipolar spot (left
panel) shows clearly as having lower intensity, and the
penumbra is visible at the knee of the plot as in Figure 1.
Most encouraging, the brightness enhancement of the
decayed facula (right panel), far from the limb at l ¼ 0:81, is

clearly visible, increasing with magnetic flux strength. The
maximum brightness enhancement amounts to about 3%–
4% of the nominal intensity level. Such results are consistent
with a well-calibrated limb-compensation and flat-field
mechanism.

4. IMAGE DECOMPOSITION

The final step, inferring the labeling, is more complex
because doing so involves scientific judgment. In the system
we propose, this judgment is isolated in a falsifiable (Popper
1959) statistical model whose parameters are chosen accord-
ing to a scientist-provided labeling. This practice isolates
the problem-specific elements of the decision procedure into
a concise and testable model that naturally accounts for
noise in the observables and uncertainty in their relation to
class labels. This distinguishes the approach described
below from strictly ‘‘ algorithm-based ’’ procedures (e.g.,
thresholding or region growing), in which the only way to
describe the labeling method is via the computer code that is
ultimately used and for which reckoning with the uncer-
tainty inherent in noisy data and uncertain labelings takes
place away from its natural probabilistic setting. We also
note that the framework outlined here extends naturally to
any number of image observables.

Because of the abundance of prior information, we adopt
a Bayesian view that allows us to use expert knowledge of
observed data in the consistent framework referred to
above. Following well-established statistical practice
(Geman &Geman 1984; Ripley 1988; Turmon & Pap 1997),
we treat the labeling step in this Bayesian framework as
inference of the underlying pixel classes (symbolic variables
represented by small integers) based on the observed (vec-
tor-valued) pixel characteristics. The viewpoint is that there
is a family of K physical processes, and at any site s 2 S,
exactly one process is dominant, say xs. In general, the dom-
inance of a given process has a spatial coherence, so that
labels tend to form clumps in the image plane. The observ-
able feature vector ys then depends only on the dominant
process at s, not on the process that is active at neighboring
sites. This scheme was originally borrowed from statistical
physics to model images with occasional sharp transitions
in the observable ys. Direct models based on (for example) a
spatially correlated Gaussian process on the observables
themselves cannot account for such transitions. Introduc-
tion of the hidden label variable xs, which controls the
observable, explains the dramatic shifts by a change of the
dominant process at that site.

The posterior probability of labels given the observed
data is central in the Bayesian framework. Here, by Bayes
rule, this probability is

PðxjyÞ ¼ PðyjxÞPðxÞ=PðyÞ / PðyjxÞPðxÞ: ð1Þ

The constant of proportionality is unimportant because we
are only interested in the behavior of the posterior as the
labeling x is varied. We remark that the Bayesian frame-
work allows the computation of many relevant quantities
besides just PðxjyÞ. We can easily find, for example, the K
numbers comprising the posterior probability distribution
PðxsjyÞ: a concentrated posterior indicates confidence in the
assigned labeling. For now, our goal is to find the optimal
labeling. If we are given a reward every time we recover the
correct labeling x, but nothing for incorrect labelings, it can
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be shown that the best strategy is to choose the labeling
maximizing equation (1), or equivalently, its logarithm:

x̂x ¼ argmax
x

logPðyjxÞ þ logPðxÞ½ �: ð2Þ

This is the well-known maximum a posteriori (MAP) deci-
sion rule.

To use the MAP rule, we must specify PðxÞ and PðyjxÞ.
The assumption made above that the hidden labels drive the
observables means that given the controlling variable xs, ys
is independent of ys0 for any s0 6¼ s. Alternatively,

PðyjxÞ ¼
Y
s2S

PðysjxsÞ; ð3Þ

i.e., the observables are not coupled when given the label-
ing.

Prior models PðxÞ can be specified in many ways. We
have used theMarkov field smoothness priors

PðxÞ ¼ Z�1 exp �
X
s0�s

�ðs; s0Þ1ðxs 6¼ xs0 Þ
" #

: ð4Þ

Here the indicator 1ð� � �Þ is 1 if the contained proposition is
true and zero otherwise. The site coupling �ð� � � ; � � �Þ � 0
can account for differing distances between pixels. The con-
stant Z is chosen to normalize the probability mass func-
tion, and the sum extends over ‘‘ neighboring ’’ sites in S. On
our rectangular grid, sites are neighbors if they adjoin verti-
cally, horizontally, or diagonally, so each site s has eight
neighbors, denoted NðsÞ. Such distributions were originally
introduced to model ferromagnets, and this particular for-
mulation is known as the ‘‘ Potts model ’’ in statistical
physics (Wu 1982).

For illustration, consider first the following simplified
example: the smoothness �ðs; s0Þ ¼ �, a constant, and within
each label type 1 	 k 	 K , data are conditionally Gaussian,
distributed with per-class mean vectors lðkÞ and RMS
energy �. Data in each class are therefore scattered isotropi-
cally about the class mean, so that

PðysjxsÞ ¼Nðys; lðxsÞ; �2IÞ

¼ 1

ð2��2Þd=2
exp � 1

2

ys � lðxsÞ
�

����
����
2

" #
; ð5Þ

where Nðy; l;�Þ is the d-dimensional normal density func-
tion with the indicated mean and covariance matrix, and
k � � � k is the Euclidean norm, so vk k2¼

Pd
i¼1 v

2
i . Combining

with equation (4), taking logarithms as in equation (2), and
discarding terms not involving x yields the objective func-
tion

� 1

2

X
s2S

ys � lðxsÞ½ �=�k k2��
X
s0�s

1ðxs0 6¼ xsÞ: ð6Þ

The first term is the familiar likelihood function, forcing
each label xs to be such that lðxsÞ is close to the data ys. The
second, arising from the prior probability of a labeling,
penalizes feature maps with many disagreements among
neighboring sites, such as those with speckled patterns of
activity. Together, they can be interpreted as a Lagrangian
form that dictates that we maximize fidelity to the data,
subject to a constraint on the physical reasonableness of the
labeling. As � drops, rougher labelings are penalized less.

We emphasize that any prior model (eq. [4]) with � > 0 cou-
ples the labels at neighboring pixels, and so the Bayesian
inference procedure does not correspond to a per-pixel deci-
sion rule. With � ¼ 0, labels are spatially uncoupled, but the
decision region may still be complex depending on the per-
class distributions.

In fact, to accurately describe the characteristics of the
features of interest to us, a more flexible distribution than a
simple Gaussian must be used. For example, in the bottom
left panel of Figure 1, the sunspot class is clearly not well fit-
ted by a normal distribution. We have employed the wider
class of finite normal mixture distributions (McLachlan &
Peel 2000) of the form

PðyÞ ¼
XJ
j¼1

�jN y; lj;�j

� �
; ð7Þ

where
PJ

j¼1 �j ¼ 1, the constituent mean vectors lj are arbi-
trary, and the covariance matrices �j are symmetric posi-
tive-definite. The function Nðx; l;�Þ is the distribution of a
Gaussian bump in d dimensions, centered at l and with
covariance�:

Nðy; l;�Þ ¼ 1

ð2�Þd=2ðdet�Þ1=2

� exp � 1

2
ðy� lÞT��1ðy� lÞ

� �
: ð8Þ

By letting J increase, the underlying distribution can be fit-
ted more exactly. The free parameters �j, lj, and �j are
chosen by maximum likelihood. When J > 1, there is no
longer a closed-form solution for these parameters, so they
must be estimated by numerical optimization of the likeli-
hood function, equations (3) and (7). We have used the well-
known expectation-maximization (EM) algorithm (x 3.2,
McLachlan & Peel 2000), although other numerical meth-
ods would work (Redner & Walker 1984). For use with
MDI, we have modified the EM maximization to account
for the symmetry constraint on the magnetic field: all distri-
butions must be invariant with respect to a reversal in the
polarity of the field. To choose J, we have used cross-vali-
dated likelihood (Smyth, Ide, &Ghil 1999; Smyth 2000).

The distributional model for the quiet-Sun class (xs ¼ 1)
is easy to determine by extracting samples of quiet Sun from
a selection of images in the time studied here. This results in
a set of quiet-Sun parameters f�j; lj ;�jgJ1j¼1. We extracted
millions of pixels of quiet Sun, but used only a randomized
selection of 20,000 feature vectors to determine the 30 or
so free parameters. The corresponding distribution
Pðysjxs ¼ 1Þ is shown in the top row of Figure 4. The left
panel shows the six components of the distribution, and the
right panel shows them superimposed on a subset of the
quiet-Sun data. The outer ellipses represent a value of 2.5
standard deviations in any direction from the class center,
and the lines intersecting the ellipses are its major and minor
axes. (The graph is not printed with axis scales equal, so they
do not cross at right angles.) For the numerical parameter
values, see Table 1. Some components have a direct inter-
pretation. For example, QS-1, with a center very close to (0,
1000), is the dominant component of the quiet-Sun class.
However, QS-2 and QS-3 are also significant, and are due to
supergranulation cells. The QS-4 pair, with a nonzero value
of magnetic field, appears due to the quiet network.
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Fig. 4.—Models and their fit to data. Top: Quiet-Sun model components (left), superposed on training data (right). Middle: Same plots for the union of
sunspots and faculae.Bottom: All model components plotted with test data (left) and quiet-Sun detail (right).



The distributions for the other region types are deter-
mined similarly, as indicated in Figure 3. Areas in images
that represent sunspots and faculae are outlined, and a dis-
tribution is fitted to the resulting pooled scatter plot con-
taining both objects. We used pooled data rather than
attempting to separate the facula and spot components
because we found it too difficult to ensure that the classes
were not mixed; we prefer to allow the clustering algorithm
to extract the classes in an unsupervised mode. Once a dis-
tribution Pðysjxs 6¼ 1Þ (i.e., faculae and sunspot) has been
found, it is decomposed manually into its component clus-
ters. This is shown in the middle panels of Figure 4. The fac-
ulae appear as two components with slightly enhanced
intensity, and the sunspot components are the lower five,
typically with much greater magnetic field. We used 5000
feature vectors sampled at random from a collection of
active regions to fit, again, roughly 30 parameters. The fit of
the model to the pooled data used to determine it is shown
in the middle right panel.

At this point, PðyjxÞ is fully specified via equation (3).
Because we have constructed not just a decision rule but a
full model for the observed data, we can check its validity in
a falsification experiment (Popper 1959) using independ-

ently drawn test data sampled at random from the entire set
of image pixels. The bottom panels in Figure 4 show this
experiment. The left panel shows the full range of feature
vector values, and the right panel is a detail plot of the cen-
tral portion. This shows a good fit of the class models to
independently sampled data.

The decision regions corresponding to these class models
are shown in Figure 5; this is a map across the feature space
of the class having the largest density. This map has some
novel features. For example, we see that these distributional
models do not support the practice of ‘‘ axis-parallel ’’
threshold rules for class membership. At the quiet-Sun
boundary, for example, the presence of the supergranula-
tion stretches the decision region along the intensity
coordinate.

The other ingredient is the prior PðxÞ. Its contribution to
the maximization will be small because the labeling should
be predominantly determined by the observed data and the
model PðyjxÞ. For now, we have let �ðs; s0Þ ¼ �, a constant.
Straightforward considerations (Ripley 1988, p. 97) show
that 0:45 < � < 1:10 for a neighborhood size of eight is
needed to preserve corner configurations. We have used a
value � ¼ 0:5 for the labelings reported here to ensure that

TABLE 1

Model Components for Quiet Sun, Faculae, and Sunspot

Tag �j lj,1 lj,2 (�j,11)
1=2 (�j,22)

1=2 �j
a

QS-1..... 0.4308 0.00 999.46 4.28 8.25 0.00

QS-2..... 0.2085 0.00 995.55 7.66 8.91 0.00

QS-3..... 0.2024 0.00 1003.30 9.93 7.19 0.00

QS-4..... 0.0553 13.19 1003.49 32.84 9.12 0.25

QS-40 .... 0.0553 �13.19 1003.49 32.84 9.12 �0.25

QS-5..... 0.0476 0.00 1015.04 15.08 9.92 0.00

Fac-1 ... 0.5000 90.10 1009.63 109.33 14.60 �0.51

Fac-10 ... 0.5000 �90.10 1009.63 109.33 14.60 0.51

SS-1 ..... 0.5245 0.00 915.03 190.58 79.30 0.00

SS-2 ..... 0.1828 443.93 833.88 271.25 116.65 �0.82

SS-20 .... 0.1828 �443.93 833.88 271.25 116.65 0.82

SS-3 ..... 0.0550 766.36 549.42 359.29 134.87 �0.37

SS-30 .... 0.0550 �766.36 549.42 359.29 134.87 0.37

a The correlation coefficient � ¼ �12=ð�11�22Þ1=2.

Fig. 5.—Decision regions across feature space. The abscissa is magnetic field and the ordinate is intensity; the most probable class is plotted. The left plot
shows the full range of feature space and the right details the quiet Sun.
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the prior term will be moderate compared to the likelihood
term. Model accuracy might be improved by allowing the
label coupling �ðs; s0Þ to depend on the three-dimensional
distance between sites. As sites become farther apart, they
would be less coupled; in particular, this would allow sub-
stantial label fluctuation in the radial direction near the
limb, while providing for moderate label smoothing at disk
center.

5. ALGORITHMS FOR LABELING

The labeling is implicitly defined via the maximization of
equation (2). The objective function can be written, simi-
larly to equation (6), as

logPðxjyÞ ¼
X
s2S

logPðysjxsÞ

�
X
s0�s

�ðs; s0Þ1ðxs0 6¼ xsÞ þ C ð9Þ

for some constant C depending only on �ð� � � ; � � �Þ. The key
functions of the data that must be computed in order to
evaluate this probability are the probability maps
Pðysjxs ¼ kÞ for each pixel s 2 S and class 1 	 k 	 K ; for
theMDI images, we of course use the mixture probability of
Table 1.

Direct approaches to finding an exact maximizer are diffi-
cult because the space of labelings is discrete and huge: of
size K jSj, where jSj is the number of image sites. In practice,
numerical methods adapted from statistical physics (Met-
ropolis et al. 1953; Geman & Geman 1984) are employed to
draw a sample from PðxjyÞ; this sampling scheme is boot-
strapped to find the maximizer. The stochastic sampling
methods, originally developed for simulations of Ising mod-
els of magnetism, work by iteratively refining a labeling as
follows. Starting from some initial labeling, update each
site’s label by drawing from the distribution PðxsjxNðsÞ; yÞ.
One scans repeatedly through all s 2 S, updating labels in
turn. Since most labels rarely change, it is useful to maintain
a table of neighbor counts for each site. Also, since each
label-update amounts to rolling a die with the given proba-
bilities, one can further speed the computation (Ripley
1988, p. 100) by noting that a series of die rolls is equivalent
to a single draw of a geometric random variable represent-

ing the waiting time until the die outcome changes. This
yields a method for drawing a full labeling x from the distri-
bution PðxjyÞ.

To find its maximizer, introduce a nonnegative tempera-
ture parameter T that controls the sharpness of the annealed
posterior

PTðxjyÞ ¼ 1=ZT exp T�1 logPðxjyÞ
� �

; ð10Þ

where the constant ZT normalizes the distribution to sum to
unity. This has the effect of multiplying the log-posterior
(eq. [9]) by T�1. As T ! 0, it is easy to see that PT concen-
trates on the most likely elements in PðxjyÞ; sampling from
PT thus becomes equivalent to choosing a maximizing label-
ing. It can be shown (Geman &Geman 1984) that if temper-
ature is decreased slowly enough, a maximizer is indeed
obtained. While seemingly indirect, these methods are well
established in the statistics literature for this class of prob-
lems. Computations for jSj ¼ 10242 take on the order of 2
minutes on a modern workstation; memory requirements
are for K floating-point probability maps, one table of
neighbor counts for each site, and one integer labeling.

6. DISCUSSION

Determining structural information about solar phenom-
ena is one way to understand and refine the mechanisms of
solar irradiance variability. We have demonstrated that the
MDI photograms and magnetograms, used together, have
the potential to identify these solar structures accurately.
The first step in using these image sources together is a well-
calibrated, temporally stationary, preprocessing scheme for
putting flattened photograms and magnetograms in the
same reference frame. Once this is done, a formalism for
automated image segmentation based on contemporary
image segmentation techniques is applied to the normalized
data. The parameters in this model are fitted from scientist-
provided image labelings, and their accuracy can be checked
by standard statistical methods.

As an example, we show in Figure 6 the data and labeling
for 1996 August 30, 07:35 UT. The preprocessed magneto-
gram was interpolated from 1 minute magnetograms taken
263 minutes earlier and 6 minutes later. The photogram has
been preprocessed using the procedure outlined in x 3. The

Fig. 6.—Preprocessedmagnetogram (left), photogram (middle), and labeling (right) for 1996 August 30, 07:35 UT
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labeling shows a small, concentrated sunspot (NOAA 7986)
surrounded by a much larger facula. To the left of the prin-
cipal sunspot is another small sunspot near the center of the
negative-polarity (dark-colored) magnetic region. Inspec-
tion of the photogram shows that there is indeed a small
area of significant intensity decrease (about 10% over sev-
eral pixels) that results in this classification. The NOAA
Solar Geophysical Data Bulletin (SGD) also identifies this
feature as a sunspot. This labeling is in close agreement with
the one of Fligge et al. (2000) on the same day (their Fig. 2).
In particular, three small facular regions near the equator
and other small faculae below the principal facula are visible
in both sets of labelings.

Figure 7 shows results from 1996 November 25 and 26;
the top panel is chosen to match the day shown in Figure 3
of Fligge et al. (2000). In this case, the 5 minute magneto-
grams are used. Interpolation in the top panels used magne-
tograms 36 minutes earlier and 443 minutes later; bottom
panels, 90 minutes earlier and 485 minutes later. The active
regions here are more complex and evolve rather quickly
over time, so exact agreement between the two labelings is
not expected. However, both the labelings of Fligge et al.
(2000) and that in the top panel here identify two active
regions, each with two main components. The leftmost
region, NOAA 7999, has in turn several small components
between the twomain spots that roughly correspond in both
labelings and in the SGD. The lower series shows images
from the next day, November 26, and demonstrates the abil-

ity to consistently track active regions to within 2–3 pixels
of the limb. Both sunspot components of the right-hand
active region (NOAA 7997) are resolved at the edge of the
limb. The new sunspot region that has appeared between
the two larger groups is NOAA 8000 and also appears for
the first time in the SGD for November 26. This spot is
related to the facula identified in the previous day’s labeling.
These examples show a high degree of spatial coherency in
the resulting labelings, as well as good agreement with other
labelings.

The population of active regions included in this study
was limited. Only three spots (NOAA 7981, 7999, and 8083,
present in many images) were strong enough to cause more
than about 10 pixels per image to drop below 250 in inten-
sity. The model of Table 1, therefore, is rather unlikely to
generate any intensities below that level. Of course, a more
comprehensive survey that extended up to solar maximum
uncovered manymore such spots (about 40 in theMDI data
up to 2000 December), and their inclusion would change
the models somewhat. For example, Figure 8 shows thumb-
nail images and corresponding feature vector plots for 2
days near solar maximum. The top images (2001 April 7,
6:24 UT) show NOAA 9415, which is a complex bipolar
spot with clear umbra and penumbra having intensity well
below 200 in several places. None of the spots observed in
the 14 month window treated here had such a complex mag-
netic configuration or such low intensities. The bottom
images (2000 November 25, 11:11 UT) highlight an artifact

Fig. 7.—Preprocessed magnetograms (left), photograms (middle), and labelings (right) for 1996 November 25, 11:51 UT (top row) and November 26, 15:57
UT (bottom row).
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of theMDI instrument at very low intensity, where the com-
puted magnetic field is erroneously low due to an onboard
lookup table limitation (Liu & Norton 2001).2 The effects
of this distortion will rightly only appear once active-region
models are fitted using data near solar maximum.

In assessing the impact of this temporal nonstationarity
on labelings, we note that a model may have excellent dis-
criminative capacity, even though it does not have complete
generative capacity (Mjolsness &DeCoste 2001). The model
for feature vectors (eq. [7]) generates observable pixels mim-
icking MDI at midcycle (Fig. 4, bottom) but fails in some
parts of feature space to generate plausible peak-cycle sun-
spot pixels. Its generative capacity is therefore incomplete,
and it will not pass a falsification experiment such as that in
Figure 4. However, to identify active regions, we need only
the class maximizing equation (9) to be unchanged. So, far
from class boundaries, the class probabilities could be inac-
curate and still lead to the correct labeling. The previously

unseen pixels in Figure 8 will thus be explained as arising
from the sunspot class because the other two classes are even
less probable.

We have also applied these techniques to terrestrial
imagery from Mount Wilson. For those data, the atmo-
spheric point-spread function (PSF) blurs all features, ren-
dering spatial regularization less important: we have taken
� ¼ 0 for that imagery. However, even at lower spatial reso-
lutions, it remains useful to be able to deal coherently with
multiwavelength observables and to let the decision regions
be determined by explicit and checkable models. With the
advent of active optics and better telescopes, the effective
resolution of groundmeasurements is increasing. For exam-
ple, the Precision Solar Photometric Telescopes, already
operating in Rome, Hawaii, and Sacramento Peak, provide
high photometric precision and high spatial resolution
(2048� 2048 pixels) full-disk images at two continuum
wavelengths (402 and 609 nm) and also in the Ca ii K line.
Forthcoming ground-based observations by SOLIS (Syn-
optic Optical Long-term Investigations of the Sun) and

Fig. 8.—Preprocessed magnetograms and photograms (left) and corresponding feature vectors (right) for two strong active regions (upper: NOAA 9415;
lower: NOAA 9236).

2 Available at http://soi.stanford.edu.
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ATST (Advanced Technology Solar Telescope) will further
advance our understanding of the dynamics and evolution
of active regions by producing high-resolution images. In
particular, SOLIS will provide full-disk vector magneto-
grams in about 15 minutes and with 100 pixels. ATST will
produce visible and infrared images from 0.3 to 35 lm with
a resolution of 0>1 or better. Even with these high-resolu-
tion observations, the atmospheric PSF will remain a prob-
lem if it varies significantly in time. The region models, since
they are built from pooled data, will reflect the diversity of
the PSF, but features in relatively more blurred images may
be oversmoothed. These seeing effects could be modeled if
side information about the time-varying PSF is obtained.

One item not stressed here is the model flexibility allowed
in defining PðysjxsÞ. This distribution, relating the region
types to the observables, can be let to depend on the spatial
location of a site. This may be an advantage for specifying
the characteristics of faculae, which have a spatially varying
contrast. We have already made attempts to establish an
empirical relation between the intensity and magnetic flux
of different features as a function of their position on the
solar disk. Spatially varying sensor noise can be modeled in
a similar way. Whether or not all such second-order adjust-
ments are incorporated in the statistical model, identifica-
tion of the various regions will facilitate finding the so-
called empirical calibration curves between the MDI mag-
netic field values and the continuum intensity images as a

function of the evolution of the active region involved. It is
anticipated that having labelings readily at hand will allow
other such ‘‘ per-region ’’ quantities to be computed.

While we have not done so here, in a full ‘‘ pattern-theo-
retic ’’ approach (Grenander &Miller 1994), the label infor-
mation can be linked into larger, more abstract structures
describing individual active regions and facular groups.
Such structural models have been used, for example, to infer
galactic shapes from digitized images (Ripley & Sutherland
1990) and to describe chromospheric plages (Turmon &
Mukhtar 1997). The plage models in particular can be read-
ily adapted to describe photospheric faculae via an auto-
matically determined bounding polygon.
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the fine points of the MDI FITS data and metadata. The
research described in this paper was carried out by the Jet
Propulsion Laboratory, California Institute of Technology,
by the University of California, Los Angeles, and by the
Goddard Earth Science and Technology Center, University
of Maryland, Baltimore County, under a contract with
NASA. The research was supported by a grant of the
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