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Abstract

We consider mixture density estimation problems where physical knowl-

edge indicates that a symmetry constraint of the form x
D
= Ax holds for

an orthogonal linear transform A. This symmetry constraint implies a
corresponding constraint on the mixture density parameters. Focusing
on the gaussian case, we propose an adaptation of the usual expectation-
maximization (EM) algorithm which incorporates the constraint. Imple-
mentation is discussed and examples are given.

1 Introduction

Science data analysis involves problems about which much prior physical
knowledge typically exists. Often this knowledge is to a significant degree
uncertain; if the analysis is performed in a probabilistic framework there
are various ways to incorporate such uncertain knowledge. Most often, a
Bayesian framework models the uncertainty as satisfying the postulates
of conventional mathematical probability, therefore finding expression in
terms of a prior probability distribution. In this paper we consider quite
certain physical knowledge which may be handled as a hard constraint
on model parameters rather than via probabilistic preference as in the
Bayesian setting.

We here consider a simple constraint which captures underlying sym-
metry in density estimation problems. In particular, we are interested in
cases where the target random variable x ∈ Rd satisfies

x
D
= Ax (1)

for some linear transform A. It is immediate that A is nonsingular: other-
wise Ax would be concentrated in a proper subspace of Rd, and the law of
x would fail to have a density function with respect to Lebesgue measure

1



on Rd. Furthermore, we know |A| = 1 since

1 =

∫
p(x) dx =

∫
p(Ax) dx = |A|−1

∫
p(y) dy = |A|−1 .

There are in general no further restrictions on A, e.g. through its singular
values. For example, consider for some orthonormal U the symmetry
matrix

A = U

[
0 2

1/2 0

]
UT .

Choosing x ∼ N(0,Σ) where

Σ = U

[
2 0
0 1/2

]
UT =⇒ AΣAT = Σ ,

so that x
D
= Ax. In algebraic terms, A ∈ SL(d,R), the special linear group

over Rd.
The data in figure 1 originally motivated us. We show bivariate feature

vectors taken from a pair of synchronized solar images. The plots in the
upper panels are from the Michelson Doppler Imager (MDI) on the SoHO
spacecraft, and they show a symmetry of the density with respect to
changing the sign of the magnetic flux, corresponding to

A =

[
−1 0
0 1

]
The lower panels show similar data from Mt. Wilson Observatory (MWO),
and exhibit the same symmetry. Especially in cases with limited training
data, it is important to constrain the fitted model as much as possible.

To model the densities, we have employed the class of finite normal
mixture distributions [MP00a] of the form

p(x) =

K−1∑
k=0

γkN(x; µk,Σk) (2)

where
∑K−1
k=0 γj = 1, the constituent mean vectors µk are arbitrary, and

the covariance matrices Σk are symmetric positive-definite. We require
that the (µk,Σk) be distinct to preserve identifiability. By letting K
increase, the underlying distribution may be fit more exactly. The free
parameters

θ = {(γk, µk,Σk)}K−1
k=0 (3)

are chosen using training data

X = {xn}Nn=1 (4)

and the maximum likelihood criterion:

θML = arg max
θ∈Θ

log p(X; θ) . (5)

When K > 1, there is no longer a closed-form solution for these parame-
ters so they must be estimated numerically. We use the well-known EM
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Figure 1: Synchronized magnetogram and photogram, with scatter plots of
feature vectors in various regions.

(Expectation-Maximization) algorithm [MK97, sec. 2.7], which has the
virtue of easily accommodating constraints like (1).

The sequel is organized as follows. In the next section we review the
structure of the parameter constraints implied by the symmetry constraint
in the context of normal mixtures. Then we derive the single-component
(K = 1) solution because it is of independent interest, and it contains most
of the elements of the general solution, which we discuss in the following
section. Implementation issues and some representative results follow this
derivation.

2 Constrained Mixture Parameters

Suppose that x is governed by a mixture of normal distributions param-
eterized by θ = {(γk, µk,Σk)}K−1

k=0 . Then the constraint (1) is satisfied
if

(γ, µ,Σ) ∈ θ ⇒ (γ,Aµ,AΣAT) ∈ θ . (6)

To see this, first note that the condition (6) implies the existence of a
permutation π of {0, . . . ,K − 1} which maps the components according
to the transformation A:

π(k) = min
l:θl=Aθk

(l − k) mod K . (7)
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Q = 6

uθ0

uθ1 =Aθ0

uθ2 =A2θ0

uθ3 =A3θ0

uθ4 =A4θ0

uθ5 =A5θ0

Q = 3

uθ12

uθ13 =Aθ12

uθ14 =A2θ12

uθ12 =A3θ12

uθ13 =A3θ13

uθ14 =A3θ14

Q = 2

uθ16

uθ16 =Aθ15

uθ15 =A2θ15

uθ16 =A2θ16

uθ15 =A4θ15

uθ16 =A4θ16

Figure 2: A schematic parameter diagram shows three cycles in a symmetric
system of period P = 6. All P versions of the component are shown on the
diagram; the P/Q repeat versions are shown in the same color.

To see that π is a permutation, note that the set of l satisfying the condi-
tion is guaranteed to be nonempty by (6) so π is a well-defined function
on {0, . . . ,K − 1}. Furthermore,

π−1(l) = min
k:θl=Aθk

(k − l) mod K (8)

which has the effect of counting down from l, looking for the first matching
parameter tuple, while π counts up.

Returning to the proposition: if (6) holds,

p(Ax) =

K−1∑
k=0

γkN(Ax; µk,Σk) =

K−1∑
k=0

γπ(k)N(x; µπ(k),Σπ(k)) = p(x)

where π is as above, showing that (6) is sufficient for (1).
Let us examine this structure more closely. The domain of any permu-

tation can be partitioned into cycles, each of the form C = (k1, . . . , kQ) for
some length Q. Cycles are the minimal subsets of the domain which are
fixed by the permutation: π(ki) = ki+1 and π(kQ) = k1. The permutation
is uniquely determined, and succinctly described, by listing its cycles.

The cycles of π above correspond to structural properties of the mix-
ture. Because the cycles partition the components, we use the standard
notation [k] for the equivalence class of component k under π. For in-
stance, a component θk might itself satisfy the constraint, and π(k) = k:
a cycle of length Q = 1. At the other extreme, a chain of Q = P inter-
mediate components, each of which in itself has no symmetry properties,
might be needed to lead around to θk. Such a group is illustrated in the
left panel of figure 2, which takes P = Q = 6 and schematically represents
application of A to some θk as rotation by 60◦, and distinct components
θl, l ∈ [k] as different-colored dots. (The figure shows them in sequence,
although that is not true in general.) Note that cycles of length Q > P
cannot occur. If such a cycle existed, both θk(1) and θk(P ) = AP θk(1)

would exist in θ. But by periodicity of A, the latter equals θk(1), and the
mixture is not identifiable, which is a possibility we exclude.

More generally, cycles of 1 ≤ Q ≤ P components are possible so long
as Q divides P (written Q | P ). The middle panel of the figure shows
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Cycle Mixture
Indexes

Q P ′ Internal
Constraint

External
Constraint

1 0–5 6 1 none: A6 = I θ5 = Aθ4 = · · · = A5θ0
2 6–11 6 1 none: A6 = I θ11 = Aθ10 = · · · = A5θ6
3 12–14 3 2 θ12 = A3θ12 θ14 = Aθ13 = A2θ12
4 15–16 2 3 θ15 = A2θ15 θ16 = Aθ15
5 17–18 2 3 θ17 = A2θ17 θ18 = Aθ17
6 19 1 6 θ19 = Aθ19 —

Table 1: An example of parameter groups and constraints. Here P = 6, K = 20,
and Ks = (12, 3, 4, 1).

the Q = 3 case where C = (12, 13, 14); here there are only three distinct
colors because θ12 = A3θ12. The right panel showsQ = 2 and C = (15, 16).
These diagrams illustrate why it is necessary that Q | P . Suppose Q < P
and note that AQθk(1) = θk(1), which implies ApQθk(1) = θk(1) for any
integer p. Fix in particular the smallest p such that pQ ≥ P ; if Q 6 | P then
0 < pQ−P < Q. Since AP θk(1) = θk(1), we have that ApQ−P θk(1) = θk(1).
But this contradicts the minimality of Q as being the smallest integer l
such that Alθk(1) = θk(1).

Within these restrictions, many component structures may co-exist in
a given component-list θ. Since the ordering of the mixture components
is immaterial to the distribution, it is convenient to establish conventions
for the parameter organization. In the symmetric case, a K-component
mixture corresponds to a vector Ks, with components summing to K,
each giving the number of mixture components devoted to cycles of each
possible length Q such that Q | P . For instance, if P = 6, a symmetry of
Ks = (12, 3, 4, 1) implies that K = 20 and

π = ((0, 1, 2, 3, 4, 5)(6, 7, 8, 9, 10, 11)(12, 13, 14)(15, 16)(17, 18)(19)).

The corresponding parameter set consists of six cycles of parameters; see
table 1. Figure 2 shows parameters corresponding to the first, third, and
fourth groups of π. Of course, Ks can be recovered from θ, but the
explicit notation is helpful. To sum up, suppose a given cycle contains Q
constituents. In the standard ordering, all cycle parameters are related
via

θk, θk+1 ≡ Aθk, . . . , θk+Q−1 ≡ AQ−1θk ; (9a)

each component also satisfies an internal constraint

(∀l ∈ [k]) θl = AQθl . (9b)

Earlier work has examined related constraints, often viewing the im-
posed structure as a way to achieve a compact parameterization of the
covariance matrix — the most profligate consumer of degrees of free-
dom in high-dimensional mixtures. It is well-known that various kinds of
sparse covariances (e.g., Σk = σ2

kI) can be accommodated in the frame-
work of the EM algorithm. The idea of mixtures of factor analyzers
[RT82, GH96, MP00b] is related, and amounts to covariance models of
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the form Σk = HkH
T
k + Dk, with Hk having relatively few columns and

Dk diagonal. In this model, parameters are not shared among classes.
Related multilevel models [LP98] do share some parameters. A “semi-
tied” covariance model has been used in state-dependent output model-
ing for hidden Markov models (HMMs) [Gal99]. This parameterizes a
subset K ⊂ {0, . . . ,K − 1} of the component covariance matrices using
common eigenvectors: for k ∈ K, Σk = HDkH

T where Dk is a component-
specific diagonal matrix. Other component subsets K′ could have different
structuring matrices H, and all the parameters are estimated via an EM
algorithm. Remarks on choosing an optimal basis H are in [Gop98].

3 Single Component Solution

The solution for a normal distribution is worth deriving on its own because
it contains all the elements of the general case, presented in the next
section, except the iterative re-estimation inherent in the EM algorithm.
This model can be viewed as a mixture with K = 1, having one cycle with
Q = 1 that obeys the constraint θ0 = Aθ0, and by extension θ0 = Apθ0

for any integer p. The likelihood is

l1(µ,Σ) = log p(X) =

N∑
n=1

logN(xn; µ,Σ)

= −(Nd/2) log 2π − (N/2) |Σ| −
N∑
n=1

(xn − µ)TΣ−1(xn − µ)/2

where N(·) is the gaussian density. Well-known manipulations using the
“trace identity,” trAB = trBA (see the Appendix), yield

l1(µ,Σ) = −(N/2)[κ+ log |Σ|+ (m−µ)TΣ−1(m−µ) + tr Σ−1S(m)] (10)

where κ = d log 2π and the sufficient statistics

m := N−1
N∑
n=1

xn (11a)

S(η) := N−1
N∑
n=1

(xn − η)(xn − η)T = S(m) + (m− η)(m− η)T .

(11b)

The sample covariance is parameterized by an offset η; typically either
S(m) or S(0) is computed. The expression (10) incidentally allows elegant
derivations of the unconstrained maximum likelihood estimate (MLE).
Indeed, Σ > 0 implies Σ−1 > 0, so the log-likelihood is quadratic in µ, and
µ̂ = m. Inserting into l1 leaves two terms depending on Σ. Since Σ is in
one-to-one correspondence with Σ−1, l1 may be differentiated with respect
to the latter (see the Appendix) to obtain the condition Σ̂ − S(m) = 0,
whence Σ̂ = S(m).

To enforce the one-component structural constraints

µ = Aµ, Σ = AΣAT (12)
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we use the standard method of lagrange multipliers. The lagrangian term
corresponding to µ = Aµ is lµ = λT(µ − Aµ) for a vector of lagrange
multipliers λ to be determined. Enforcing Σ = AΣAT calls for a matrix
Λ of lagrange multipliers, one for each entry of D = Σ−AΣAT:

lΣ =
∑
i,j

λijDij = trDTΛ = tr(Σ−AΣAT)Λ = tr Σ(Λ−AΛAT) (13)

where we have used Σ = ΣT and the trace identity. The constraint (12)
on Σ is equivalent to the same constraint on Σ−1, allowing us to use the
more convenient

lΣ−1 = tr Σ−1(Λ−AΛAT)

instead of lΣ.
The overall one-component lagrangian is the sum of these terms:

l1C(µ,Σ) = −(N/2)[κ+ log |Σ|+ (m− µ)TΣ−1(m− µ) + tr Σ−1S(m)+

2λT(µ−Aµ) + tr Σ−1(Λ−AΛAT)] . (14)

Differentiating with respect to µ implies

µ̂ = m+ Σ(I −A)Tλ .

To choose λ to satisfy the constraint, note that

Pµ̂ =

P−1∑
r=0

Arµ̂ = Pm̃+

P−1∑
r=0

ArΣ(I −A)Tλ = Pm̃+ Σ
[P−1∑
r=0

Ar(I −AT)
]
λ

(15)
where Pm̃ =

∑P−1
r=0 A

rm, and we have used that Σ and A commute
when (12) is in force. The quantity in brackets is in fact zero: it contains
all powers of A in positive and negated versions. The constrained mean
is

µ̂ = (1/P )

P−1∑
r=0

Arm . (16)

Substituting back into (14), rewriting the quadratic form as a matrix
trace, and using a modified sample covariance matrix S(µ̂) = S(m)+(m−
µ̂)(m− µ̂)T leaves

l1C(µ̂,Σ) = −(N/2)[κ+ log |Σ|+ tr Σ−1(S(µ̂) + Λ−AΛAT)] . (17)

As in the unconstrained case, differentiating with respect to Σ−1 is more
direct, and yields

Σ̂ = S(µ̂) + Λ−ATΛA .

To enforce the constraint, note that when Σ̂ satisfies it,

P Σ̂ =

P−1∑
r=0

ArΣ̂AT r =

P−1∑
r=0

ArS(µ̂)AT r +

P−1∑
r=0

Ar(Λ−ATΛA)AT r

The second term vanishes, and

Σ̂ = (1/P )

P−1∑
r=0

ArS(µ̂)AT r . (18)
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The constrained MLE is summarized in equations 16 and 18. The
solution is parallel to the unconstrained MLE, has the interpretation of
being an average of appropriately transformed statistics of the data, and
is readily computable from the sufficient statistics m and S(m).

4 Normal Mixture Solution

Following the standard approach to fitting a mixture distribution via EM
(e.g., [DLR77]), define for each xn a corresponding sequence of indicator
variables Zn = (zn,0, . . . , zn,K−1). Exactly one of these indicators equals
one, signaling which component of (2) generated xn. We correspondingly
denote Z = {Zn}Nn=1, and the pair (X,Z) becomes the complete-data
of the EM algorithm. The probability distribution of the complete-data
factors as

p(X,Z) =

N∏
n=1

K−1∏
k=0

[γkN(xn; µk,Σk)]zn,k (19)

implying that the loglikelihood neatly decouples

log p(X,Z) =

K−1∑
k=0

N∑
n=1

zn,k log[γkN(xn; µk,Σk)] .

Its expectation given the observation is

lK(Θ) = E[log p(X,Z) |X] =

K−1∑
k=0

N∑
n=1

αn,k log[γkN(xn; µk,Σk)] (20)

where the weights

αn,k := E[zn,k |xn] = N(xn;µk,Σk)
/K−1∑

l=0

N(xn;µl,Σl) . (21)

It is readily seen that
∑K−1
k=0 αn,k = 1, a consequence of

∑K−1
k=0 zn,k = 1.

For the same reason, 0 ≤ αn,k ≤ 1, so αn,k/N is a joint probability
distribution function. It is convenient to also define

αk =
∑N

n=1
αn,k, αn|k = αn,k/αk; (22)

the latter is a correctly normalized conditional distribution.
The expectation lK(Θ) is to be maximized at every EM iteration to

update the parameters. These parameters can be ordered in any way, but
here we assume without loss of generality that they have the structure
laid out in equations 9 and table 1.

The update for the weights can be derived separately because the terms
of lK involving γk separate from those in which other parameters appear.
Including the lagrangian term forcing the weights to be normalized, the
function to be maximized is

lK,C(γ0, . . . , γK−1) =

K−1∑
k=0

αk log γk − λ
(K−1∑
k=0

γk − 1
)

.
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To find γk, recall from (9a) that all weights γl, l ∈ [k], are in fact the same
parameter. Differentiating reveals the necessary condition∑

l∈[k]
αl − λ#[k]γ̂k = 0

where #[k] is the cardinality of the cycle. Summing all these conditions,
one per cycle, and recalling that

∑K−1
l=0 αl = N shows that

λ
∑

cycles [k]
#[k]γ̂k = N

Since the sum must be unity, λ = N , and the optimal weight is

γ̂k =
(
1/#[k]

)∑
l∈[k]

αl/N . (23)

This is just the average class-membership in the cycle containing k, nor-
malized to sum to unity.

The remaining terms of lK(Θ) involve the means and covariances, the
weights having already been chosen. Similarly to section 3, we may rewrite
the remaining terms of (20) as

lK(µ0, . . . , µK−1,Σ0, . . . ,ΣK−1) =

− 1

2

K−1∑
k=0

αk
[
log |Σk|+ (mk − µk)TΣ−1

k (mk − µk) + tr Σ−1
k Sk(mk)

]
(24)

using the weighted sufficient statistics

mk :=

N∑
n=1

αn|kxn (25a)

Sk(η) :=

N∑
n=1

αn|k(xn − η)(xn − η)T = Sk(mk) + (mk − η)(mk − η)T .

(25b)

For both averages, the k subscript indicates weighting by the conditional
probabilities αn|k. It is easy to recover from (24) the standard uncon-
strained EM updates

µ̂k = mk, and Σ̂k = Sk(mk)

by inspection (for µ̂k) and differentiation (for Σ̂k) just as below (10).
It is immediate from the sum in (24) that, in the unconstrained mixture

problem, each bump’s parameter updates (µ̂k, Σ̂k) decouple across k. In
the constrained case, differentiating with respect to µk or Σk will involve
all components in [k], but no others: components within a cycle are tied
via (9a). In the remainder of this section, we suppose the cycle is indexed
as [k] = {0, . . . , Q− 1} to avoid superfluous notation.

To enforce the external constraints of (9a), we let µ0 be a free pa-
rameter, and then write µl = Alµ0 for 0 < l < Q, and similarly for the
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covariances. We again use the lagrangian mechanism to account for the
internal constraints (9b), namely

µl = AQµl, Σl = AQΣlA
TQ, 0 ≤ l < Q, (26)

which can of course by accomplished by constraining (µ0,Σ0) only; com-
pare (12). With this way of writing the parameters, the cycle-k terms of
the objective function (24) are

lK(µ0,Σ0) = −1

2

Q−1∑
k=0

αk
[
log |Σ0|+ (mk −Akµ0)TAkΣ−1

0 ATk(mk −Akµ0)+

tr Σ−1
0 ATkSk(mk)Ak

]
= −

α[0]

2

Q−1∑
k=0

ᾱk
[
log |Σ0|+ (ATkmk − µ0)TΣ−1

0 (ATkmk − µ0)+

tr Σ−1
0 ATkSk(mk)Ak

]
(27)

where α[0] :=
∑Q−1
k=0 αk and ᾱk = αk/α[0], a probability mass function on

{0, . . . , Q− 1}.
Collapsing theQ parameters to one has made, for example, m0, . . . ,mQ−1

informative about µ0. It thus aids understanding to rewrite (27) via an-
other set of sufficient statistics

m̄ :=

Q−1∑
k=0

ᾱkA
Tkmk (28a)

S̄ :=

Q−1∑
k=0

ᾱkA
TkSk(Akm̄)Ak . (28b)

Intuitively, the cycle’s statistics are transformed back to the (µ0,Σ0) coor-
dinates and averaged there. Formally, m̄ arises by completing the square
in the quadratic form involving µ0 in (27):

Q−1∑
k=0

ᾱk(ATkmk − µ0)TΣ−1
0 (ATkmk − µ0) =

(m̄− µ0)TΣ−1
0 (m̄− µ0) +

Q−1∑
k=0

ᾱk(ATkmk − m̄)TΣ−1
0 (ATkmk − m̄)

Substituting and combining summations into the trace converts (27) into

lK(µ0,Σ0) = −
α[0]

2

(
log |Σ0|+ (m̄− µ0)TΣ−1

0 (m̄− µ0)+

tr Σ−1
0

Q−1∑
k=0

ᾱk
[
(ATkmk − m̄)(ATkmk − m̄)T +ATkSk(mk)Ak

])
. (29)
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Applying the covariance decomposition (25b) reveals the summation to
be

Q−1∑
k=0

ᾱkA
Tk
(
Sk(mk) + (mk −Akm̄)(mk −Akm̄)T

)
Ak =

Q−1∑
k=0

ᾱkA
TkSk(Akm̄)Ak = S̄ .

Ignoring the leading factor, which is irrelevant to the maximization,
the objective, including the lagrangian terms, becomes

lK,C(µ0,Σ0) = − log |Σ0| − (m̄− µ0)TΣ−1
0 (m̄− µ0)− tr Σ−1

0 S̄+

2λT(µ0 −AQµ0) + tr Σ−1
0 (Λ−AQΛATQ) . (30)

Differentiating the lagrangian with respect to µ0 gives the necessary con-
dition

µ̂0 = m̄+ Σ0(I −AQ)Tλ

To satisfy the constraint on µ̂0, reuse the averaging trick (15) with P ′ =

P/Q terms, noting that (AQ)P
′

= I and that Σ0 and AQ commute in the
presence of (26). The constrained mean is

µ̂0 = (1/P ′)

P ′−1∑
r=0

ATQrm̄ . (31)

Substituting µ̂0 into the lagrangian (30) and rewriting yields

lK,C(µ̂0,Σ0) = − log |Σ0| − tr Σ−1
0

(
S̄ + (m̄− µ̂0)(m̄− µ̂0)T

)
+

tr Σ−1
0 (Λ−AQΛATQ) (32)

As before, we differentiate with respect to Σ−1
0 to get a necessary condition

Σ̂0 − S̄ − (m̄− µ̂0)(m̄− µ̂0)T + (Λ−AQΛATQ) = 0

Using once again the observation that, when the constraint is satisfied,

P ′Σ0 =
∑P ′−1
r=0 ATQrΣ0A

Qr, we find the constrained covariance

Σ̂0 = (1/P ′)

P ′−1∑
r=0

ATQr[S̄ + (m̄− µ̂0)(m̄− µ̂0)T
]
AQr . (33)

Equations 31 and 33, together with the sufficient statistics (28), encap-
sulate the constrained EM iteration. The parameters are updated with a
weighted average of transformed sufficient statistics. The first averages,
equations 28, are across Q terms, one for each linked component in the cy-
cle. The second averages, in (31) and (33), are over the sufficient statistics
influencing each individual bump.

This has allowed us to find (µ̂0, Σ̂0), the base parameters θk for cycle
[k], so it is immediate that θl = Alθk for 0 < l < Q. The same procedure
is used to find the parameters for the other cycles.
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5 Conclusion

We have developed an EM algorithm for maximum-likelihood estimation
of symmetry-constrained normal mixtures. A subsequent paper discusses
implementation and results.
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6 Appendix

Some useful facts, which may need conditions on Σ. See also [BLW82,
WS98].
∇Σ log |Σ| = Σ−1.
∇Σ tr ΣM = M .
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