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The number of observations that may be made in a given period of time by the Spitzer 
Space Telescope is restricted by the amount of available on-board storage. The data volumes 
of the observations are estimated during observation sequencing. Overestimation may result 
in unnecessary idle time on the observatory, and Spitzer has a high-level project 
requirement to be 90% efficient in scheduling observations. On the other hand, 
underestimation may result in violation of a mission operations constraint to tolerate the loss 
of a single downlink session without filling the on-board storage. In this paper, we describe 
statistical methods to increase downlink utilization on Spitzer and enable more observations 
to be safely taken while taking on a planner-specified level of risk. By comparing predicted 
science data volumes to the historical record of actual, observed data volumes, we construct 
a model of the bias (tendency for over prediction) of the predictions for each of the three 
Spitzer instruments. We also find and validate a variance estimate for the data volume 
predictor. The variance allows us to quantify the probability of a mis-estimation of any given 
size. The form of our model allows us to precisely “roll up” the risks associated with three 
separate downlink sessions into a single high-level probability of buffer under-run which 
corresponds directly to a planner-enforced requirement. 

Nomenclature 

€ 

PAOn  = Period of Autonomous Operation n during which 

€ 

xn  is recorded to on-board storage 

€ 

Passn  = Downlink session n:  data set n is transmitted and data set n–1 is deleted from on-board storage 

€ 

xn  = Actual data volume recorded during 

€ 

PAOn  (measured in storage units) 

€ 

ˆ x n  = Predicted data volume recorded during 

€ 

PAOn  (measured in storage units) 

€ 

˜ x n  = Corrected data volume for 

€ 

PAOn  as determined from our procedure (measured in storage units) 

€ 

σ n
2  = Variance of 

€ 

˜ x n  relative to 

€ 

xn  (measured in storage units squared) 

€ 

yn  = Actual Missed-Pass Minimum (free space in the on-board storage) at the start of 

€ 

Passn  in case of a 
single fault (measured in storage units) 

€ 

ˆ y n  = Predicted Missed-Pass Minimum (free space in the on-board storage) at the start of 

€ 

Passn  in case of 
a single fault (measured in storage units) 

€ 

˜ y n  = Corrected Missed-Pass Minimum as determined from our procedure (measured in storage units) 

€ 

ν n
2 = Variance of 

€ 

˜ y n  relative to 

€ 

yn  (measured in storage units squared) 

€ 

sn  = The instrument that is recording data during 

€ 

PAOn  

€ 

P(A | B,C)  = The probability that 

€ 

A  is true, given that 

€ 

B and 

€ 

C  are true. 

€ 

pnofill  = The minimum acceptable probability that the on-board storage will not fill in case of a single fault 

€ 

h  = Bandwidth of the smoother window (measured in storage units). 

€ 

ar  = Coefficients of the r-degree polynomial to convert from predicted to corrected data volumes. 

€ 

E(s,r)  = Cumulative residual function 

€ 

K (x, ⋅ )  = Localized weighting function about a given predicted data volume 

€ 

ε  = Error residual between predicted and actual PAO data volumes. 
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€ 

TP  = True Positives 

€ 

FP  = False Positives 

€ 

TN  = True Negatives 

€ 

FN  = False Negatives 

€ 

α  = False Positive Rate 

€ 

β  = True Positive Rate 

€ 

m = Mitigation Rate 

I. Introduction 
HE Spitzer Space Telescope is the fourth of NASA’s Great Observatories.1-3 It takes astronomical images in 
infrared light. It was launched in August of 2003, and is in an Earth-trailing, heliocentric orbit. It is cooled to 

within a few Kelvins of absolute zero by a supply of liquid helium. Spitzer has three science instruments, the 
Infrared Array Camera (IRAC), the Multi-band Image Photometer (MIPS), and the Infrared Spectrometer (IRS). The 
cryogen is predicted to run out between January and July of 2009. After that, it will still be possible to operate the 
IRAC instrument. But, only two of its four detectors will continue to produce valid data at the higher, passively 
cooled temperature. 

Only one of the three instruments is powered on at a time. Each stays on for a campaign of from one to three 
weeks. There typically one or two times per day that Spitzer downlinks data to Earth. Sometimes, there can be as 
many as forty hours between telecommunication sessions. 

Spitzer has a high-level requirement to operate at or above 90% efficiency. Astronomical observations, science 
instrument calibrations and spacecraft slews to science targets are considered to be efficient. All other activities, 
including slews to Earth (for the purpose of downlinking data) and time spent down linking data are considered to be 
inefficient. The largest single source of inefficiency is the time taken to downlink data from the spacecraft. During a 
typical week, the spacecraft spends between 3% and 11% of its time downlinking data. The project therefore wants 
to minimize both the number of telecommunication sessions, and the duration of each session. On the other hand, 
the project does not wish to fill the on-board storage. This places an upper limit on the time allowed between 
telecommunication sessions. 

The major source of uncertainty in sizing and spacing the downlinks is the on-board lossless data compression 
algorithm. The project produces an estimated compressed data volume for each downlink. Before the analysis 
described in this paper was performed, the project had used a fixed limit on the size of downlinks to prevent 
overfilling the on-board storage. That is, the project assumed that the data volume predictions had no uncertainty in 
them at all. 

Because there is uncertainty in the data volume predictions, and their accuracy is not constant, this fixed limit 
necessarily had a considerable amount of conservatism built in, reducing operational efficiency. The goal of this 
paper is to characterize the mean and error bars of actual observed data volumes as a function of predicted data 
volumes, and thereby allow the project to quantitatively assess the probability of filling the on-board storage (XXX 
alternate wording: …probability of transgressing customary margins for on-board storage). The project can then 
operate the spacecraft as efficiently as possible while not being overly conservative or aggressive with the predicted 
data volumes. 

II. Management of the Spitzer On-board Storage 

A. Single-Fault Tolerance 
Spitzer has a two-phase data transmission and acknowledgment system.4 That is, a set of data is downlinked on 

one telecommunications pass and then deleted via ground command on the next. Data that were not received on the 
ground are retransmitted rather than deleted. In the nominal case, at the start of each downlink the spacecraft has the 
two most recent sets of data in the on-board storage. The most recent set will be downlinked, and the set before that 
will be deleted. At the end of each downlink, only one set of data remains on board. A single fault in this system will 
result in the need to store three sets of data at once, rather than the nominal two. Therefore, to be single-fault 
tolerant, the project must limit the data volumes such that any three consecutive sets of data will fit in the on-board 
storage. 

A single fault is any problem that prevents either sending the commands to delete the previous set of data, or that 
prevents receiving the current set of data on the ground. For example, if the project is unable to send the data-
acknowledgment commands during 

€ 

Passn , there will still be two sets of data at the end of 

€ 

Passn . Consequently, 
there will be three sets of data at the start of 

€ 

Passn+1. In this case, the project typically is able to send commands 

T 
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during 

€ 

Passn+1 to delete both sets of data, and thereby leave only one set of data on board at the end of 

€ 

Passn+1. A 
similar sequence occurs when the project fails to receive data. If the project receives no data during 

€ 

Passn , it will 
have no acknowledgment command to send during 

€ 

Passn+1. At the end of 

€ 

Passn  there will be one set of data, 
because the project sent the acknowledgment command during 

€ 

Passn . But, at the end 

€ 

Passn+1 there will be two sets 
of data. It will take several passes to retransmit the missed data and thereby clear the backlog. If both problems, 
failure to send the command and failure to receive the data, occur at the same time, during 

€ 

Passn , the result is two 
independent single failures. The spacecraft would have two sets of data at the end of 

€ 

Passn  and at the end of 

€ 

Passn+1, but would never have four sets of data at once. 
If there is more than a single fault, some observations may be skipped to prevent filling the on-board storage. 

Before each astronomical observation begins, the spacecraft checks to make sure that there is enough free space in 
the on-board storage to accommodate the predicted data volume of that individual observation plus 7500 SU of 
margin. Filling the on-board storage has a large chance of putting the spacecraft into standby or safe mode. An entry 
into either mode would halt science observations, and would take several days to recover from. Under normal 
circumstances there is always enough space in the on-board storage, the check succeeds, and the observation is run. 
However, if there has been more than a single fault in the data-transmission system, the check may fail and, if so, the 
observation is skipped. In this case, the spacecraft performs the initial slew to the target, but sits idle for the duration 
of the observation. It then continues with the rest of the observations as before. This fill-avoidance check was 
implemented to minimize the consequences of a failure. But, the project of course wishes to avoid even this 
minimized consequence whenever possible. 

B. Existing Method to Manage Data Volumes 
It takes thirty-seven days to develop a sequence of commands for the Spitzer spacecraft to perform science 

observations. Each science sequence takes approximately seven days to execute on the spacecraft. At any given 
time, there are five or six science sequences in development and one executing on the spacecraft. The project 
manages data volumes in two different ways. Before the science sequence begins execution, the project checks that 
each series of three consecutive sets of data will fit in the on-board storage. During the execution of the science 
sequence, the project observes the actual data volumes and state of the on-board storage. The project uses that 
information to predict the future state of the on-board storage, taking into account any faults that have occurred. In 
the remainder of this paper, we will focus on the pre-execution analysis. 

About three weeks before the science sequence is set to begin execution on the spacecraft, the project assesses 
the predicted data volumes. The fundamental calculation used to analyze the predicted data volumes is shown in 
Eq. (1). 

 

€ 

ˆ y n  = 121 732 − ( ˆ x n−2  + ˆ x n−1  + ˆ x n )  (1) 

The predicted missed-pass minimum for 

€ 

Passn , 

€ 

ˆ y n , gives the predicted amount of free on-board storage that 
would remain in case of a single fault. That is, in case the spacecraft had to store three sets of data: 

€ 

ˆ x n−2 , 

€ 

ˆ x n−1 , and 

€ 

ˆ x n at the same time. All data volumes are measured in Storage Units (SU). The on-board storage is 121 732 SU in 
size. This calculation for predicted missed-pass minimum is performed for each telecommunications session. The 
criterion for deciding if the 

€ 

ˆ y n  is acceptable is shown in Eq. (2). 

 

€ 

ˆ y n  > 7500  (2) 

The value of 7500 SU was chosen to allow margin for twenty-four hours of engineering telemetry, and for 
underestimation of science data volumes. If the on-board storage were actually to fill, there is a large probability that 
the spacecraft would halt operations and enter standby mode. It typically takes two or three days to resume normal 
operations following an entry into standby mode. At the beginning of each science observation, the spacecraft 
checks to see if there is enough free space in the on-board storage for the predicted data volume of that observation 
plus the 7500 SU margin. If there is not, the observatory does not execute the observation and sits idle for that 
observation’s predicted duration. This protective mechanism prevents a science observation from filling the on-
board storage. It has been triggered five to ten times since it was implemented about two years ago. However, no 
such protective measure can be put in place for engineering telemetry. Engineering telemetry is written at a rate of 
about 210 SU/h. 
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If 

€ 

ˆ y n  < 7500 SU, we say that 

€ 

Passn  is not single-fault tolerant.  The data volumes 

€ 

ˆ x n−2 , 

€ 

ˆ x n−1  and 

€ 

ˆ x n  are 
collectively too large and some mitigation measures must be taken, such as moving science observations from one 
PAO to another, getting backup ground antennas, or removing science observations altogether; Ref. 1 details these 
and other strategies. 

If 

€ 

ˆ y n  ≥ 7500 SU, we say that 

€ 

Passn  is single-fault tolerant. If 

€ 

ˆ y n  is as large as 60 000 SU or 70 000 SU, then it 
may be possible to increase efficiency by removing one of the telecommunication sessions all together. That time, 
perhaps up to an hour, could then be used for new science observations. This method is somewhat limited because 
the times of the telecommunication sessions are fixed before the science observations are schedule. Therefore, it is 
possible to forgo a telecommunications session, but not to move it earlier or later. 

C. New Method to Manage Data Volumes 
The existing method described in the previous section assumes that the predicted data volumes have no 

uncertainty. That is, that the actual data volumes will exactly match the predicted. In reality there is quite a bit of 
uncertainty in the predicted data volumes. As discussed before, this uncertainty is due to the performance of the on-
board lossless data-compression algorithm. So, in this paper, we wish to understand and account for this uncertainty. 

This uncertainty leads to observational inefficiency. We must skew the predictions systematically in the direction 
of under-prediction. That is, so that the actual data volumes tend to come out smaller than predicted. This will be 
shown clearly in Section III. The most direct way to eliminate this inefficiency would be to improve the data volume 
prediction algorithms on the ground to reduce the variance directly. For several reasons, this is not practical for the 
Spitzer project at this phase of the mission. So, the approach we take is to better characterize the bias and variance of 
the existing predictions, and base our decisions whether to approve a set of data volumes on a probabilistic basis 
taking the variance into account. 

First, we define 

€ 

yn  similarly to 

€ 

ˆ y n , as shown in Eq. (3). 

 

€ 

yn  = 121 732 − (xn−2  + xn−1  + xn )  (3) 

The actual missed-pass minimum for 

€ 

Passn , 

€ 

yn , gives the actual amount of free on-board storage that would 
remain in case of a single fault. That is, in case the spacecraft had to store three sets of data: 

€ 

xn−2 , 

€ 

xn−1  and 

€ 

xn  at the 
same time. Instead of the criterion in Eq. (2), we would like to use as the criterion the probability that 

€ 

yn  will be 
greater than 7500 given the predicted data volumes and test that number against a given lower limit. 

 

€ 

P(yn > 7500  |  ˆ y n )  ≥  pnofill  (4) 

In Eq. (4), 

€ 

pnofill  is the given lower limit of risk that the project has chosen to accept. Its value can range between 
zero and one. But, for example, 

€ 

pnofill  would most likely be in the range of 0.95 to 0.99. Unfortunately, Eq. (4) is too 
simple for this problem. The variance of the predicted data volumes, and hence of the predicted missed-pass 
minimum via Eq. (1), is a function of both the predicted data volumes, and which science instrument is on during 
those PAOs. For a given constant 

€ 

yn , the associated variance can change significantly depending on the sizes of the 
three data volumes and which instruments produced which data volumes. So, Eq. (4) would yield unnecessarily 
large variances in the 

€ 

yn  in a large number of the cases. Instead of the predicted missed-pass minimum, we must use 
the individual predicted data volumes and instruments for each of 

€ 

xn−2 , 

€ 

xn−1  and 

€ 

xn  as shown in Eq. (5). This 
method lets us reduce the variances of the actual missed minimum for those cases that allow it. 

 

€ 

P(yn > 7500  |  sn−2,  ˆ x n−2,  sn−1,  ˆ x n−1,  sn ,  ˆ x n )  ≥  pnofill  (5) 

We assume that there is no uncertainty about which of the three science instruments is on for any given PAO. 
So, we make no distinction between predicted and actual for it. In the next section, we describe our data set and how 
we approach the solution of Eq. (5). 
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III. Data Sets and Statistical Approach 

A. The Training Data Set 
The data set analyzed in this paper is composed of predicted data volumes, actual data volumes, predicted 

missed-pass minimums and actual missed-pass minimums for 550 PAOs. The first PAO in the data set is from 2006-
10-19 and the last from 2007-10-31, a span of 377 days or almost 54 weeks. 

We chose this data set because the ground configuration related to producing estimates of data volumes was 
stable during this period. And, the spacecraft and ground stations performed well during this period, so that virtually 
all data were received on the ground. Nonetheless, there were several instances where we had to exclude data from 
the analysis. 

Table 1 shows a few sample rows from the data set. We have numbered the five hundred and fifty rows from 85 
to 634 to correspond to our project-internal tracking tool. Each row represents a single telecommunications session. 
Empty cells in the table represent invalid or excluded data. Three predicted missed-pass minimums, numbers 132 to 

134, are excluded because of the one excluded predicted PAO volume number 132. Table 2 shows how the terms in 
Eqs. (1-5) correspond to the data set as shown in Table 1. In this scheme 

€ 

xn  is recorded to the on-board storage 
before 

€ 

Passn . 

Table 1. Sample of the data set. 
  Predicted Actual 

Num Instrument 

Missed 
Pass 

Minimum 
PAO 

Volume 

Missed 
Pass 

Minimum 
PAO 

Volume 
127 IRS 47,105 23,768 47,752 23,397 
128 IRS 29,445 41,588 30,077 41,537 
129 IRS 16,518 39,858 17,104 39,694 
130 IRAC 14,060 26,226 16,027 24,474 
131 IRAC 20,598 35,050 23,206 34,358 
132 IRAC     24,569 38,331 
133 IRAC   24,761 24,981 24,062 
134 IRAC   18,122 42,004 17,335 
135 IRAC 56,010 22,839 59,621 20,714 
136 IRAC 52,043 28,728 57,631 26,052 
137 IRAC 28,617 41,548 37,704 37,262 
138 IRAC 23,347 28,109 33,988 24,430 
139 IRAC     24,622 35,418 
140 IRAC     31,785 30,099 
141 IRAC   29,155 31,014 25,201 
142 MIPS   35,234 33,448 32,984 
143 MIPS 29,173 28,170 36,790 26,757 
144 MIPS 20,779 37,549 27,927 34,064 

 

Table 2. Correspondence of the data set to the equations. 
  Predicted Actual 

Num Instrument 

Missed 
Pass 

Minimum 
PAO 

Volume 

Missed 
Pass 

Minimum 
PAO 

Volume 
n-2 

€ 

sn−2  

€ 

ˆ y n−2  

€ 

ˆ x n−2  

€ 

yn−2  

€ 

xn−2  
n-1 

€ 

sn−1  

€ 

ˆ y n−1  

€ 

ˆ x n−1  

€ 

yn−1  

€ 

xn−1  
n 

€ 

sn  

€ 

ˆ y n  

€ 

ˆ x n  

€ 

yn  

€ 

xn  
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The two adjacent and excluded PAO volumes in rows 139 and 140 combine to exclude four missed-pass 
minimums, numbers 139 to 142. See Eq. (1) for both cases. Also note that every excluded actual PAO volume 
resulted in three excluded actual missed-pass minimums. That is, none of the actual PAO volumes were close 

enough to overlap. A total of sixty out of a possible seventy-two pairs of missed-pass minimums were excluded. The 
net result is that we have 526 valid pairs of PAO data volumes and 490 valid pairs of missed-pass minimums, each 
out of a possible 550. See Tables 3 and 4. 

Table 3 shows a summary of how many PAO volumes were excluded and how many were included. We need a 
valid pair of predicted and actual data volumes to include a given PAO in the analysis. The two columns under the 

Pairs heading show that there were no cases where both the actual and predicted volumes were invalid for the same 
PAO. That is, 20+4-24 = 0. 

We excluded predicted PAO volumes as invalid for one of the following two reasons: 1) the predicted data 
volume was larger than could be transmitted in the corresponding telecommunications session – a bug in the 
prediction software causes a known error (11 exclusions), or 2) the PAO contained a certain type of observation with 
the IRAC instrument that produces a particularly large volume of data – the prediction algorithm does not work well 
for this class of observations (9 exclusions). 

We excluded actual PAO volumes as invalid for one of the following two reasons: 1) science observations were 
autonomously skipped on board the spacecraft – this action is taken to prevent the on-board storage from filling 
when there is insufficient free space (2 exclusions), or 2) science observations were removed by ground intervention 
during sequence execution – this action allows the project to extend a telecommunications session and thereby clear 
a backlog of retransmitted data more quickly (2 exclusions). 

Table 4 shows a summary of how many missed-pass minimums were excluded and how many were included. In 
order to count a missed-pass minimum as valid, the corresponding PAO volume and the two preceding PAO 
volumes must all be valid. See Eqs. (1, 3). That is, if one or more of these three PAO volumes were excluded, then 
the missed-pass minimum is excluded as well. 

Unlike in Table 3, we do not show the numbers for each instrument. We cannot in all cases assign a missed-pass 
minimum to a single instrument. After each instrument transition the next two missed-pass minimums are mixtures 
of PAO data volumes from the incoming and outgoing instruments. For example, see rows 130, 131, 142, and 143 in 
Table 1. There are two missed-pass minimums for which both the actual and predicted values were invalid. That is, 
50+12-60 = 2. These two are in fact just the first two missed-pass minimums in the data set. We expect this because 
it is never possible to calculate the missed-pass minimums for the first two elements of the data set. By comparing 
Tables 2 and 3, we can see that there only were fifty predicted missed-pass minimums that were excluded rather 
than the maximum of sixty. Sixty is the maximum because it is three times the number of excluded PAO volumes, 
twenty. However, in several cases, the excluded PAO volumes were close enough to each other so as to overlap, 
saving a net of ten missed-pass minimums from exclusion. 

 

Table 3. Summary of excluded (invalid) and included (valid) PAO data volumes. 
 Number of PAO Volumes 
 Predicted Actual Pairs  

Instrument Invalid Valid Invalid Valid Invalid Valid Total 
IRAC 15 118 0 133 15 118 133 

IRS 0 145 1 144 1 144 145 
MIPS 5 267 3 269 8 264 272 
Total 20 530 4 546 24 526 550 

 
 

Table 4. Summary of excluded (invalid) and included (valid) missed-pass minimums. 
 Number of Missed Pass Minimums 
 Predicted Actual Pairs  
 Invalid Valid Invalid Valid Invalid Valid Total 

Total 50 500 12 538 60 490 550 
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B. Characteristics of the Data Set 
Figure 1 shows a scatter plot of actual versus predicted PAO data volumes for all 526 valid pairs. Data volumes 

for IRAC are colored red, those for IRS and green and those for MIPS are blue. The diagonal line shown in black 
has a slope of one and a y-intercept of zero. We can observe several patterns from this plot. First, the predicted PAO 
volumes for each of the three instruments show different characteristics of variance. IRS has the least variance; its 
data points are closely clustered. IRAC has the most variance. And, MIPS is in between the two. Second, the 
variances for IRAC and MIPS tend to increase as predicted data volume increases. Third, there is a certain amount 
of conservatism built in to the estimates. Most of the data points are below the diagonal line. That is, the actual PAO 

volume turned out to be less than predicted. Since the IRS data volumes show the most consistent variance, there is 
very little if any conservatism built in for that instrument. It is this conservatism that is a source of observational 
inefficiency for Spitzer, and which we want to eliminate using the analysis described in this paper. Since the 
predictions for IRS are already well behaved, the most benefit will be gained for the IRAC and MIPS instruments. 

Figure 2 shows a scatter plot of actual versus predicted missed-pass minimums for all 490 valid pairs. The 
diagonal line shown in black has a slope of one and a y-intercept of zero. In Fig. 2, the conservatism of data volume 
prediction is shown by most of the data points being above the diagonal line. That is, the actual missed-pass 
minimum turned out to be larger than predicted. This is the reverse sense compared to the data volumes in Fig. 1. 
This reversal is caused by the minus signs in Eqs. (1 and 3). The graph in Fig. 2 is additionally divided into four 
regions, which are separated by the vertical and horizontal purple lines. These lines are each located at 7500 SU on 
their respective axes. This is the same 7500 SU limit from Eqs. (2, 4 and 5). The 7500 SU limit is important because 
of the automated on-board fill-avoidance check described in Section II. A. 

Data points in region 1 represent times when both the predicted and actual missed-pass minimums were greater 
than 7500 SU. They represent little risk of filling the on-board storage, although to the extent that the actual missed-
pass minimum was greater than the predicted, they are a potential source of inefficiency. That is, there might have 
been needless idle time in those PAOs when the predicted missed-pass minimum was close to 7500 SU, near the left 
edge of region 1, because the project incorrectly thought that it was constrained by the on-board storage. Data points 
in region 2 represent times when the predicted missed-pass minimum was less than or equal to 7500 SU, but the 
actual was greater than 7500 SU. All the points in this region represent potential sources of inefficiency as above 
since the project incorrectly thought that we were constrained by on-board storage. In addition, when the predicted 
missed-pass minimum is less than 7500 SU, the project takes some mitigation measure to reduce the risk of filling 
the on-board storage. See Ref. 4 for details. These mitigation measures add some operational risk and complexity of 
their own, and the project would like to minimize their use. The project sometimes chooses to take mitigation 
measures when the predicted missed-pass minimum is above, but still close to the 7500 SU limit. This is true 
especially when the IRAC instrument is on. Data points in region 3 represent times when the both the predicted and 
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actual missed-pass minimums were less than or equal to 7500 SU. They represent times when the risk of filling the 
on-board storage is real and the project correctly knew this and took the appropriate mitigation measures. As before, 
the project would like to minimize the need for mitigation. And, there is some limit to the magnitude of excess data 
volume for which the mitigation measures can compensate. For planning purposes, this limit is generally around 
12 000 SU. So, any missed-pass minimum below about -4500 SU is too low and cannot be completely mitigated. 
Data points in region 4 represent times when the predicted missed-pass minimum is greater than 7500 SU, but the 
actual is less than or equal to 7500 SU. Points in region 4 are the most dangerous. The represent times when the 
project incorrectly believed that no mitigation measures were needed. In general, the goals are to keep the data 
points in Fig. 2 as close to the diagonal line as possible while minimizing the number of points in regions 4, 2 and 3 
in that priority order. As we discussed before, the project is not able at this time to improve the data-volume 
prediction algorithm and thereby reduce the variance in Fig. 2 directly. Table 5 shows the number of missed-pass 
minimum data points in each region of Fig. 2. 

IV. Application of Statistical Analysis to Spitzer Mission Operations 
The buffer overflow constraint is expressed directly in terms of MPM: we require that with high probability, 

€ 

yn  > 7500 SU. To quantify this probability, first, we show how to improve the biased estimate of 

€ 

yn . Second, we 

find a variance estimate for the error of our corrected prediction. In this way, the probability of buffer overrun can 
be estimated from historical data, and then used for future decisions. The simple relationship, shown in Eqs. (1, 3), 
of MPM to the three preceding PAO values makes it easy to proceed, bottom-up, from corrected PAO values to 
corrected MPM values. Accordingly, we now describe the PAO correction and accompanying variance estimate.  
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Figure 3: Error residuals versus prediction, for each instrument. 



 
American Institute of Aeronautics and Astronautics 

9 

The tools we have to correct the bias in the estimate are the estimate itself, 

€ 

ˆ x n , and the instrument tag 

€ 

sn . As 
seen above in Fig. 1, the instrument tag is an important factor in determining the prediction error. Note that, unlike 

MPM, the PAO values are not linked in time, so the samples (

€ 

ˆ x n ) can be viewed as independent in time. We adopt 
an r-degree polynomial regression model for 

€ 

˜ x n  as an estimate of 

€ 

xn : 

   

€ 

˜ x n  =  a0  +  a1 ˆ x n  +    +  ar ( ˆ x n )r  (6) 

where we select the polynomial degree r in response to the data. The coefficients 

€ 

a  are a function of 

€ 

sn , but the 
dependence has been suppressed for compactness.  

Table 5 shows the 

€ 

r = 1 correction coefficients for each sensor. The strong linear effect (

€ 

˜ x n ≈ ˆ x n ) is evident, as 
is the conservatism (the linear coefficient in each case is less than unity). Of course, we expect a strong linear 
relation between observed data volumes and 

€ 

ˆ x n , but we fitted up to third-degree polynomials in case other effects 
were present. The benefit to including higher-order terms can be measured by the cumulative residual 

€ 

E , which we 
define as the per-sample RMS error remaining after correction, as a function of sensor s and polynomial degree r: 

 

€ 

E(s,r)  =  [ 1
N ( s) (xn − ˜ x n )2

  n=1
s( n )= s

N

∑ ]1/ 2  (6a) 

The sum extends only over the training data for a given sensor, and 

€ 

N (s)  is the number of samples for sensor 

€ 

s . 
With the scaling shown, the residual is in units of SU. For calibration, we also find 

€ 

E0 , the residual with no 
correction, that is, where 

€ 

˜ x n = ˆ x n . To justify higher-order terms, the drop in residual would have to be significant in 
relation to 

€ 

E0. For IRS and MIPS, there is clearly no benefit to higher-order corrections. For IRAC, there seems to 
be some benefit to cubic terms. But on inspection, over 
half of the drop in IRAC residual is due to a single 
point at the edge of the domain, so we have used only a 
linear correction. The resulting residuals are shown in 
the left-hand panels of Fig. 3 as a function of 

€ 

ˆ x n . 
This correction removes the bias, or conservative 

estimation, that was built in to the PAO predictions. 
The next step is to derive the variance estimate 

€ 

σ n
2 . As 

above, the variance is a function of both 

€ 

ˆ x n  and 

€ 

sn . 
The best starting point is the residual plots in Fig. 3. 
The variance typically increases as the prediction size 

increases. However, it is unclear that there is a simply parameterized expression for the variance – e.g., it does not 
appear to be linear with 

€ 

ˆ x n . We preferred not to make any a priori assumptions about the variance structure, and 
chose to estimate it non-parametrically, as a weighted average of nearby residuals. 

That is, for each instrument type, 

€ 

s  

 

€ 

σ 2 (s, x)  =  K (x, ˆ x i)  (xi − ˆ x i)
2

  i=1
s(i)= s

N

∑  (7) 

Table 5. Polynomial fits and residuals for each instrument type. 
Instrument a0 

(SU) 
a1 

(SU) 
E0 

(SU) 
E (r = 1) 

(SU) 

E (r = 2) 
(SU) 

E (r = 3) 
(SU) 

IRAC 638 0.8788 3680 1823 1787 1707 
IRS 1.4 0.9963 635 622 621 618 
MIPS 1135 0.9298 2243 1777 1763 1746 

 

 
 
Figure 4: Schematic of local variance estimation.  
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where the 

€ 

N (s)  weights

€ 

K (x, ⋅ )  are proportional to a Gaussian window centered at x with given bandwidth 

€ 

h , i.e. 

 

€ 

K (x, ˆ x i)∝ exp − 1
2 (x − ˆ x i) /h[ ]2,  and  K (

i∑ x, ˆ x i) = 1 (7a) 

This is notationally cumbersome, but conceptually simple. Figure 4 shows the idea: a localized weighting 
function (or “kernel”) K is placed about a point of interest x and the points falling within the core of the weights 
contribute most strongly to the variance at 

€ 

x . The set of all residuals in the training data is plotted as points. The 
variance estimate at some point x is defined as the weighted average, across all points, of the squared residuals. All 
residuals appear in the summation, but they are weighted by the kernel centered at x, so the points within the marked 

square contribute most significantly to the 
weighed average. The bandwidth is chosen as 

€ 

h = 5000  SU , a compromise between smoothing 
and sensitivity to local variance fluctuations. The 
resulting variance curves are overlaid on the 
residuals in the right-hand panels of Fig. 3. The 
results are not sensitive to our particular choice of 
smoothing kernel and bandwidth.  

This method of determining a localized 
variance was examined by Carroll (1982), in the 
context of a heteroscedastic linear regression 
model. In our notation, this would model the 
observed PAO volume x as 

 

€ 

x  =  (a0 + a1 ˆ x )  +  σ (s, ˆ x )ε  (7b) 

where 

€ 

σ  is as above, and the errors 

€ 

ε  are 
symmetric about zero and have unit variance. The 
first term is deterministic, and is the center of the 
scatter of possible observed PAO data volumes. 
The second term is a scale factor which influences 
spread of data volume errors. The scale factor 
depends on both the sensor type and the size of 
the estimated data volume. Earlier work (e.g., 
Hildreth and Houck 1968) considered parametric 

expressions for the scale factor 

€ 

σ , and subsequent work has considered the interplay between the deterministic and 
random components (Hall and Carroll 1989, Wang, Brown, Cai and Levine 2008), a differencing method which 
partly breaks this interplay (Levine and Brown 2007), and the case when 

€ 

ˆ x  is multivariate (Spokoiny 2002; Cai, 
Levine, and Wang 2006). 

After selecting the correction coefficients of Table 5, and establishing the method of computing variances, the 
error model for x is complete. The next step is to examine the standardized residuals to determine if the error 
distribution is nearly-Gaussian. The standardized residuals correspond to the 

€ 

ε  term above. By dividing by the local 
standard deviation, we put them on the same scale so they may be compared directly. The most straightforward 
method is to compute histograms, which are shown in Fig. 5. IRS and MIPS are reasonably well-fit by a Gaussian 
distribution, but IRAC seems to depart from Gaussianity. Modeling this departure could be computationally 
prohibitive in our context (we prefer a spreadsheet implementation), so we have chosen to invoke the Gaussian 
assumption for IRAC as well.  

The corrected PAO model is easy to roll up into a MPM model via this analog to Eqs. (1, 3): 

 

€ 

˜ y n  =  121732  −  ( ˜ x n−2 + ˜ x n−1 + ˜ x n )  (8) 

 

€ 

ν n
2 =σ n−2

2 +σ n−1
2 +σ n

2  (9) 
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Figure 5: Histograms of normalized estimation-error 
residuals for each sensor. 
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where we have used that means add, and that variances are additive for independent prediction errors. Here, the 
three terms contributing to 

€ 

˜ y n  are determined via (6) and depend on 

€ 

( ˆ x n−2,sn−2) , 

€ 

( ˆ x n−1,sn−1) , and 

€ 

( ˆ x n ,sn )  
respectively. Similarly, the three variance terms depend on 

€ 

( ˆ x n−2,sn−2) , etc., and each is computed using (7). In 

many cases, sn is different among the three constituent PAOs. By the Gaussian assumption, we predict that the MPM 
y is Gaussian distributed about the mean value 

€ 

˜ y n , and with variance 

€ 

ν n
2 , which allows us to compute confidence 

intervals of any type, including (6). 
Figure 6 shows the effectiveness of this error model for y by using the training data. (Our model has so few 

parameters that over-fitting seems unlikely, making it sensible to evaluate performance on training data. See 
section V below for results on a separate holdout set.) The horizontal axes show MPM value in two segments of the 
487-value training sequence. The error bars are centered on the black circles – we have plotted the two-sigma error 
bars, which should contain 95% of the samples. The original, uncorrected MPM estimate is shown in red, and the 
actual MPM value is the blue cross, almost all of which lie in the expected range. The pervasive undershoot of the 
original MPM estimates is also clear, so the value of the correction is clear.  As for the error bars, of the 487 MPM 
values, we would expect 22 to fall outside the two-sigma error bars; in fact, 59 values do. The non-Gaussian errors 
referred to above cause part of this. Another cause is that the errors 

€ 

ε  of (7b) are not independent as a function of 
pass number n, so there are additional cross-terms in the variance (9). 

V. Model Validation 

A. The Holdout Data Set 
The data set used to validate the statistical model is identical in form to the training data set described in section 

III A. It contains data for 325 PAOs, starting 2007-11-02 to 2008-07-10, a span of 241 days or almost 35 weeks. 
This data set is compatible with the training data set because the ground configuration is the same as for the training 
data set. There were a few more operational problems with ground equipment, so proportionately more data points 
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Figure 6. Probable Intervals 

Table 6. Summary of excluded (invalid) and included (valid) PAO data volumes from the holdout data 
set. 

 Number of PAO Volumes -- Holdout 
 Predicted Actual Pairs  

Instrument Invalid Valid Invalid Valid Invalid Valid Total 
IRAC 9 92 0 101 9 92 101 

IRS 8 101 2 107 9 100 109 
MIPS 14 101 0 115 14 101 115 
Total 31 294 2 323 32 293 325 
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were excluded. Data were excluded for the same reasons as before. Table 6 shows a summary of how many PAO 
volumes were excluded from and how many were included in the validation data set. Table 7 shows a summary of 

how many missed-pass minimums were excluded and included. 

B. Characteristics of the Holdout Data Set 
Figure 7 shows a scatter plot of actual versus predicted PAO data volumes for all 293 valid pairs. Figure 8 shows 

a scatter plot of actual versus predicted missed-pass minimums for all 276 valid pairs. The data in both figures are 
similar to the data in Figs. 1 and 2 in terms of their relation to the black diagonal lines and their variance. 

C. Results of Validation 
All the modeling described in section IV was completed before examining the validation set. The key plots for 

validation are the analogs of Fig. 6 showing highly probable intervals. Two representative segments are shown in 
Fig. 8. The color-coding is as above: the interval is two-sigma wide with a black circle at its center, the original 
estimate is a red dot, and the actual observation is a blue cross. Again, many of the original estimates are far from 
the actual value and well outside the confidence interval, so the procedure here is clearly improving the estimates as 
well as providing reasonable error bounds.  

Regarding the quantitative accuracy of the error bounds, over 90% of the observed points are inside the two-
sigma interval.  Of the 273 MPM values, we would expect 13 to land outside the two-sigma band, but in fact 23 do. 
As indicated above, we believe this is caused by some nongaussianity in the residuals, as well as the temporally-
dependent errors. 

The computations needed to estimate the probability of MPM exceeding an arbitrary threshold are simple 
enough to allow implementation as part of the existing spreadsheet-based workflow.  The model consists of the 
correction coefficients and a variance lookup table which tabulates Eq. (7) for each instrument s over a list of 

Table 7. Summary of excluded (invalid) and included (valid) missed-pass minimums from the holdout 
data set.. 

 Number of Missed Pass Minimums 
 Predicted Actual Pairs  
 Invalid Valid Invalid Valid Invalid Valid Total 

Total 50 500 12 538 60 490 550 
 

10000 30000 50000

1
0
0
0
0

3
0
0
0
0

5
0
0
0
0

Predicted PAO Volume, x̂ (SU)

A
c
tu

a
l 
P

A
O

 V
o
lu

m
e
, 
x

 (
S

U
)

Actual vs. Predicted

PAO Volume

by Instrument (holdout)

IRAC

IRS

MIPS

 
Figure 7. Actual vs. Predicted PAO Volume by 
Instrument -- holdout 

-20000 0 20000 60000

-2
0
0
0
0

0
2
0
0
0
0

6
0
0
0
0

Predicted Missed Pass Minimum, ŷ (SU)
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regularly-spaced values x.  In an operational mode, the constituent PAO data estimates are known, as well as the 
instrument types, from which the corrected MPM value Eq. (8) and its error bars Eq. (9) would be computed. 

VI. Conclusion 
The intent of this analysis was to improve Spitzer’s operational efficiency by better understanding the chance of 

filling the on-board storage in case of a single fault in the data transmission system. To demonstrate this, we 

compare the False Negative Rate, False Positive Rate and Mitigation Rate of the original system to those of the 
proposed system. We show the rates of the proposed system as functions of 

€ 

pnofill . 
To begin with, we illustrate the effect that varying 

€ 

pnofill  has on the training data set. Figure 10 is a modified 
version of Fig. 2. We chose 

€ 

pnofill  to be 0.90 and have colored all the points whose probability of not filling is less 
than 0.90 black. Figure 11 is the same as Fig. 10 but we have set 

€ 

pnofill  to be 0.99 to illustrate the effect of varying 
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€ 

pnofill . For the purposes of hypothesis testing, in Figs. 10 and 11, black points below the horizontal purple (i.e. in 
Regions 3 and 4) line represent True Positives. Orange points above the line (i.e. in Regions 1 and 2) represent True 
Negatives. Black points above the line represent False Positives. And, orange points below the line represent False 
Negatives. For comparison, in Fig. 2, points in Region 3 represent True Positives. Points in Region 1 represent True 
Negatives. Points in Region 2 represent False Positives. And, points in Region 4 represent False Negatives. 

 

€ 

α  =  FP
FP +TN

 (10) 

 

€ 

β  =  FN
TP + FN

 (11) 

 

€ 

m  =  TP + FP
TP + FP +TN + FN

 (12) 

The false positive rate in Table 8 is defined according to 
Eq. (10). Similarly, the false negative rate is defined according to 
Eq. (11). We also define the Mitigation Rate, 

€ 

m. This is the fraction 
of time that the operations team will have to take a mitigation 
measure. This will also be a factor in the project’s choice of 

€ 

pnofill . 
It is defined in Eq. (12). 

In both the original and the new methods, we wish to lower the 
false positive rate, 

€ 

α , without raising the false negative rate, 

€ 

β , too 
much. Lowering 

€ 

α  allows us to be more operationally efficient 
because it makes us more certain that we will not fill the on-board 
storage in case of a single fault and potentially allows us to collect 
more data per PAO. But, when we lower 

€ 

α , we consequently 

Table 8. False Positive and False 
Negative Counts Rates corresponding 
to the original method shown in Fig. 2. 

 Count 
Region 1, TN 452 
Region 4, FN 4 
Region 3, TP 12 
Region 2, FP 22 

Total 490 
  
False Positive Rate, α 0.046 

False Negative Rate, β 0.250 
Mitigation Rate, m 0.069 

 

Table 8. False Positive and False Negative Counts Rates corresponding to the new method shown in 
Figs. 10 and 11. 

pnofill 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 
orange above, TN 466 465 463 463 462 460 459 457 457 457 
orange below, FN 6 6 5 5 5 5 5 5 5 4 

black below, TP 10 10 11 11 11 11 11 11 11 12 
black above, FP 8 9 11 11 12 14 15 17 17 17 

Total 490 490 490 490 490 490 490 490 490 490 
           
False Positive Rate, α 0.017 0.019 0.023 0.023 0.025 0.030 0.032 0.036 0.036 0.036 

False Negative Rate, β 0.375 0.375 0.313 0.313 0.313 0.313 0.313 0.313 0.313 0.250 
Mitigation Rate, m 0.037 0.039 0.045 0.045 0.047 0.051 0.053 0.057 0.057 0.059 

           
           

pnofill 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 
orange above, TN 456 454 453 451 446 440 437 433 429 420 
orange below, FN 4 4 4 4 2 2 1 0 0 0 

black below, TP 12 12 12 12 14 14 15 16 16 16 
black above, FP 18 20 21 23 28 34 37 41 45 54 

Total 490 490 490 490 490 490 490 490 490 490 
           
False Positive Rate, α 0.038 0.042 0.044 0.049 0.059 0.072 0.078 0.086 0.095 0.114 

False Negative Rate, β 0.250 0.250 0.250 0.250 0.125 0.125 0.063 0.000 0.000 0.000 
Mitigation Rate, m 0.061 0.065 0.067 0.071 0.086 0.098 0.106 0.116 0.124 0.143 
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raise

€ 

β . Raising 

€ 

β  means that we will needlessly take mitigation measures more often. Lowering 

€ 

α  also raises 

€ 

m. 
There is an operational cost and risk associated with taking a mitigation and the project would wish to know this 
directly. Figures 12 and 13 show this relationship for the training data set and the hold out data set respectively. The 
solid lines show the results for the new method, while the dashed lines show the results for the original method. 
Roughly speaking the new method is equivalent to the original method if we choose 

€ 

pnofill  to be about 0.93. There 

seems to be a sweet spot for 

€ 

pnofill  of about 0.96 that significantly decreases 

€ 

α , by about a factor of about four, 
without increasing 

€ 

β  too much, only by a factor of about two. 
There are still some limitations of this new method. First, we must manually identify those large IRAC 

observations described in section III. A. Since we excluded those outliers from the training data set, this statistical 
model does not apply to them. These cases are few, but when they occur we must add some extra margin by hand. 
Second, sometimes we intentionally do not leave enough time during a telecommunications pass to downlink all the 
data collected during the previous PAO. We call this carryover data and the model was not designed to handle this 
case. In this case, the missed pass minimum is calculated the same way as in Eq. (1), but with an extra term added in 
for the carryover data at the end of 

€ 

Passn−3 .  As remarked in section IV, the error bars could be better calibrated by 
accounting for between-PAO correlations in the residuals, and by accounting for the slightly non-Gaussian error 
distributions. 

Finally, after Spitzer’s liquid helium runs out in about April 2009, we will have to retrain and revalidate the 
model. After that time, only two of the IRAC instrument’s four sensor arrays will continue to operate. The MIPS 
and IRS instruments will be permanently turned off since they cannot return valid science data at the higher 
temperatures. A first approximation might be to cut the IRAC science data volumes in half. But, we have no reason 
to assume that the two remaining sensor arrays currently account for half the IRAC data volume. In fact, our best 
indication is that they account for about 60% of the current volume. The fact that only one instrument will continue 
to operate will remove one source of variability in the model. But, the other source of variability, the predicted size 
of the PAO data volume, 

€ 

ˆ x n , will remain. See Fig. (3). 
The exact payoff of this change in terms of increased operational efficiency is still to be determined. And, it may 

be difficult to isolate since so many other factors outside the scope of this paper govern the operational efficiency. It 
is not always possible to schedule additional observations even if more time is made available. But, choosing a 

€ 

pnofill  greater than the current equivalent of 0.93 will reduce risk of filling the on board storage regardless of any 
increase in operational efficiency, but at the cost of increased operational complexity due to increased numbers of 
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mitigations. The decision of whether to switch to the new system and, if so, what value for 

€ 

pnofill  to choose remains 
a question for Spitzer mission management. 
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