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Abstract

The solar chromosphere consists of three classes
— plage, network, background — which con-
tribute differently to ultraviolet radiation reach-
ing the earth. Solar physicists are interested in
relating plage area and intensity to UV irradi-
ance, as well as understanding the spatial and
temporal evolution of plage shapes. We describe
a data set of solar images, means of segment-
ing the images into constituent classes, and a
novel high-level representation for compact ob-
jects based on a spatial ‘membership function’
defined via a triangulated planar graph. Segmen-
tations are found using a discrete Markov ran-
dom field setup, and the high-level representa-
tions are learned by a Markov chain Monte Carlo
birth/death process on the triangulations.

Introduction

As observed in ultraviolet light (figure 1) the solar
chromosphere roughly consists of three classes: plage
(bright magnetic disturbances), network (hot bound-
aries of convection cells), and background (cooler cell
interiors). Plages appear as irregular groups of clumps
and experience a cycle of formation and dissipation,
starting out as relatively compact regions and decay-
ing over many days into a diffuse and broken-up clus-
ter (Zirin, 1988, p. 317). The cell-structured network
has little contrast with the background, is spatially
homogeneous, and persists for tens of hours. The cells
(difficult to see in this halftoned rendering) have a char-
acteristic size, and it is thought that they arise due to
convective processes in the plasma making up the solar
atmosphere (Zirin, 1988, p. 126).
The three classes contribute differently to the ul-
traviolet (UV) radiation reaching Earth’s upper atmo-
sphere, with the plages and network giving the largest
contribution. While this radiation cannot be sensed
directly from the ground, the features giving rise to
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it can be. Such measurements are inputs to models
of solar irradiance which are crucial to understanding
phenomena such as global warming and atmopheric
photochemistry (Withbroe and Kalkofen, 1994).
Also of interest is the evolution of plages. As men-
tioned above, a typical sequence has been described:
from plage emergence as a shape of relatively smooth
boundary, to expansion, and then eventual dissolution
as an irregular, tentacled form. However, the under-
standing is of a qualitative and anecdotal sort (e.g.
(Stix, 1991, p. 284) for related work), and a more
quantitative description of anticipated plage shapes
and the evolution of plage regions would be of value.
In both sorts of problem described above one re-
duces a series of images, comprising perhaps 500MB of
data, to a time series of areas and intensities or plage
descriptions. For example, per-class areas and mean
intensities can be represented in about 48 bytes per
9MB image. The description of the features of interest
for one plage might take a few KB per image, depend-
ing on the activity level. These time series distill the
diffuse information in the large data set into a scientif-
ically usable form, at least for the tasks at hand.
The primary source of data for this study is the set
of CaII K full-disk spectroheliograms that has been
taken on film, daily or as observing conditions per-
mit, at Sacramento Peak National Solar Observatory
in Sunspot, NM from the mid-sixties onward. An in-
terval of these films, from the mid-eighties forward, has
been digitized to 2K×2K pixels, at which point atmo-
spheric blurring limits resolution.

Image Decomposition
First we discuss the problem of partitioning the im-
age into plage, network, and background components.
Generally, scientists either apply a threshold across the
flattened image to determine plage areas, or manually
surround the plages with polygons. The first method,
while simple and objective, ignores all available spatial
information. The second method uses substantial do-
main knowledge, but is also highly subjective, difficult
to describe, and hard to repeat.
Due to the strong prior information available to us
about the images, we adopt the Bayesian framework
of inference of underlying pixel classes based on the



Figure 1: A chromospheric image from 15 July 1992, showing several plages. In the center is a detail image of the
northwest plage pair; at right is a detail from disk center, with considerable contrast enhancement, showing the
network and background.

observed intensity. Denoting pixel sites s = [s1 s2] in
an image domain N , and defining matrices of class
labels x = {xs}s∈N and observed intensities y, the
posterior probability of labels given data is

P (x |y) = P (y |x)P (x)/P (y) ∝ P (y |x)P (x) . (1)

The maximum a posteriori (MAP) rule maximizes this
probability:

x̂ = argmax
x
logP (y |x) + logP (x) . (2)

The first term is the familiar likelihood function, telling
how the data is gotten from the labels; the second is the
prior probability of a given labeling. In practice, the
first term forces fidelity to the data while the second
penalizes unlikely rough labelings.
Prior models may be specified in many ways; we have
used the smoothness priors

P (x) = Z−1 exp
[
−β
∑
s′∼s

1(xs′ 6= xs)
]

(3)

introduced by Besag (Besag, 1974) and Geman and
Geman (Geman and Geman, 1984). Above, Z is a
constant normalizing the distribution, and the sum-
mation extends over all ‘neighboring’ pixels (s ∼ s′)
in N . Below we have taken the neighborhood relation
to include all pixels strictly less than two units apart
in Euclidean distance — each interior pixel has eight
neighbors. For β = 0, this distribution is uniform on
all 3card(N) labelings, and as β is increased, smoother
and smoother labelings are favored.
The remaining ingredient is the likelihood

P (y |x) =
∏
s∈N

P (ys |xs) (4)

where we assume that intensities are independent con-
ditional on the labels being known. The three densities
P (y |x = k) can be estimated from labeled data sup-
plied by scientists. It is not surprising that the plage

and network intensities have a heavy tail — making
a normal distribution inappropriate. Nonparametric
distributional tests confirm that the lognormal distri-
bution is a good model for the per-class intensities.
The objective function of (2) becomes

−
∑
s∈N

(
(log ys − µxs)

2

2σ2xs
+ log σxs

)
− β
∑
s∼s′

1(xs 6= xs′)

The tradeoff between consistency of each observed in-
tensity with the mean of its assigned class, and agree-
ment of neighboring class labels, is apparent. If β = 0
and the class variances are identical we recover the
threshold rule currently used in practice.
However, with β > 0, the optimization becomes cou-
pled across sites, and is entirely intractable for our
three-class problem. To tackle this problem we have
followed the well-known numerical method known as
the Gibbs sampler (Geman and Geman, 1984). In
brief, this works by cycling through each site, com-
puting P (xs | ys, xN(s)) for each class, and choosing
the next label from this distribution. For finite label
spaces, the resulting (random) sequence of labelings
converges in distribution to the posterior. To extremize
the posterior, one sharpens the distribution by decreas-
ing a scale parameter slowly to zero, and the resulting
labeling is the MAP estimate.
Sample results are shown in figure 2. The first
panel shows a detail of a spectroheliogram from Jan-
uary 1980; the plage is at lower-right. Beside this is
the corresponding threshold segmentation. The abun-
dant speckle is consistent with the implicit prior that
is uniform over all labelings. In the final panel is the
MAP segmentation with MRF prior at β = 0.7. The
estimate is found by the standard Gibbs sampler ap-
proach with temperature lowered in steps over 800 im-
age sweeps. The MAP/MRF segmentation eliminates
many of the tiny gaps in the large plage and makes the
network structure more apparent.



Original Image Labeling via Threshold Labeling via MRF

Figure 2: Original image detail, threshold segmentation, MAP/MRF segmentation with β = 0.7.

Spatial Descriptions

Now we address the second of the concerns raised in the
introduction, that of representing and analyzing plage
shape. In contrast to the essentially pixel-scale char-
acteristics of the network/background interplay, plages
are high-level phenomena which are not well-captured
by pixel-level rules. Following the lead of Grenan-
der (Grenander et al., 1991), we pursue a hierarchi-
cal representation of plages. We will find it convenient
to embed the pixel sites N in a bounded continuum
N̄ ⊂ R2. To represent a plage, or a cluster of related
plages, we propose a tent-like structure defined by a
triangulated planar graph

G = (V, E, h) (5)

V ⊂ N̄ a vertex set

E ⊂ N̄2 an edge relation

h : V → [0, 1] a height function

The height function extends to all of N̄ by linear in-
terpolation across the faces of the pyramids (figure 3).
This structure is intended to model the “degree of
membership” of a given pixel in the plage class, and
allows the binding of nearby plage regions into one co-
herent object. If the height function is thresholded,
the resulting shape is a cluster of regions bounded by
(not necessarily convex) polygons. This is similar to
the way scientists currently delimit plage regions man-
ually.
To define a probability distribution on these struc-
tures, we generate each as the Delaunay triangula-
tion (Aurenhammer, 1991) of independently chosen
points in N̄ . These points comprise V , and E is gener-
ated mechanically as the Delaunay triangulation of V .
Heights are then assigned independently to the mem-
bers of V to form tie-points. The probability density
of such a height function h is

P (h) = Z−1e−γ card(Vh) (6)

48

49

50

51

52

53

48

49

50

51

52

0

0.5

1

48 48.5 49 49.5 50 50.5 51 51.5 52 52.5
48

48.5

49

49.5

50

50.5

51

51.5

52

Figure 3: Top, a perspective view of a ridge structure;
bottom, an air view of the same structure.

and zero if the height function is not generated as such
a triangulation. We have assumed the members of V
are chosen according to the uniform distribution on
N̄ , and that the heights are uniform on [0, 1]. While
refinements (self-avoiding vertices, correlated heights)
are possible, their ultimate effect in the presence of
data would be minimal and not worth the added model
complexity. Another advantage of this distribution is
that additions, deletions, and adjustments of one ver-
tex have a simple effect on the cost, and a local effect
on the triangulation and the resulting cost function.

Overlaying the new structure on the existing MRF
model is simple; we wish to force agreement between
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Figure 4: Left, original image, windowed to avoid edge effects; center, plage probability; right, membership function.

plage labels and the membership function

P (h |x) =
1

Z
exp
[
−
∑
s∈N

∣∣hs−1(xs=3)∣∣− γ card(Vh)
]

The goal becomes to adapt h to achieve a parsimonious
description while fitting the pixels which indeed belong
to the object of interest.
A procedure related to the Gibbs sampler is followed
to infer h for a given labeling x. Earlier, movements in
the parameter space were label-changes and were done
via the Gibbs sampler; now such updates correspond
to altering the plage graph, and are better done by the
simpler Metropolis steps. Such a step proposes a new
state h′, computes P (h′ |x)/P (h |x), and probabilisti-
cally accepts or rejects h′ on this basis. To propose a
new state, one of three operators is chosen randomly
at each iteration: vertex move, vertex raise (or lower),
and vertex birth/death.
Move and raise are elementary as they are self-
inverses as long as isotropic vertex-moves and sym-
metric vertex-raises are used. The birth/death pair is
harder because such moves are not self-inverse, i.e. the
inverse of a birth when card(V ) = k is a death when
card(V ) = k+1. To ensure equilibrium at the distribu-
tion above, the acceptance probability is chosen follow-
ing the recent work of P. Green (Green, 1995). Finally,
to speed the sampling process the indicator 1(xs = 3)
above is replaced with its expectation P (xs = 3 | ys).
Some results are shown in figure 4. The first panel
shows the original solar image, and the second panel is
the ‘probability map’ or plage probability conditioned
on the observed data. It is this map that the graph
is intended to fit. The third panel shows a typical
triangulation after a burn-in period of 15 000 successful
Metropolis steps. It is clear that the triangulation has
captured the essentials of the plage shape.

Conclusions
We described two scientific problems of relating solar
active regions to solar irradiance, and understanding
the evolution of active regions. Currently, scientists

often label images manually, or by thresholding the
observed intensities. The use of MRF image priors al-
lows the controlled, objective incorporation of simple
kinds of prior knowledge about the spatial coherence
of labels. By using these priors in a Bayesian inference
setup, images are segmented without the speckle arti-
facts associated with threshold labeling. Also, in an
effort to understand the temporal evolution of plage
shapes, we have proposed a representation of active re-
gions in terms of a triangulated graph which gives rise
to a membership function that is learned from image
data.
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