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Abstract

The solar chromosphere consists of three classes
which contribute differentially to ultraviolet radiation
reaching the earth. We describe a data set of so-
lar images, means of segmenting the images into the
constituent classes, and a novel high-level representa-
tion for compact objects based on a triangulated spatial
‘membership function.” Such representations are fitted
in a variable-dimension Markov chain Monte Carlo
scheme.

1 Introduction

The solar chromosphere, observable (see figure 1)
in ultraviolet light, roughly consists of three classes:
plage (bright magnetic disturbances), network (hot
boundaries of convection cells), and background
(cooler interiors of these cells). Plages appear as ir-
regular groups of clumps, seldom near the solar poles.
Similar to sunspots, plages experience a cycle of for-
mation and dissipation, starting out as relatively com-
pact regions and decaying over many days into a dif-
fuse and broken-up cluster. The cell-structured net-
work has little contrast with the background, is spa-
tially homogeneous, and persists for tens of hours.
See [8] for more on chromospheric features.

The three classes contribute differently to the ul-
traviolet (UV) radiation reaching Earth’s upper at-
mosphere, with the plages and magnetic network giv-
ing the largest contribution. This radiation cannot be
sensed directly from the ground but the features giv-
ing rise to it can be; they are used as proxy inputs to
models of solar irradiance. These models are crucial
to understanding phenomena such as global warming
and photochemical decomposition processes in the up-
per atmosphere [7].

Also of interest is the evolution of plages. Current
understanding (outlined above) is of a qualitative and
anecdotal sort and a more quantitative description of
anticipated plage shapes and the evolution of plage
regions would be of value.

The primary source of data for this study is the set
of Call K full-disk spectroheliograms that has been
collected daily at Sacramento Peak National Solar Ob-
servatory from the mid-sixties onward. The images are
recorded on photographic film, an interval of which
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Figure 1: A full-disk chromospheric image from 15
July 1992, showing a decayed plage pair in the north-
west quadrant of the sun, and a younger, more con-
centrated plage in the southeast.

(from the mid-eighties forward) has been digitized to
2K x 2K pixels.

2 Image Decomposition

First we discuss the problem of partitioning the im-
age into plage, network, and background components.
Scientists often either apply a threshold across the flat-
tened image to determine plage areas, or manually
surround the plages with polygons. The first method,
while simple and objective, ignores all spatial infor-
mation that is available. The second method clearly
uses a large amount of side information possessed by
the scientists, but is also highly subjective, difficult to
even describe, and hard to repeat.

While the Bayesian framework is not universally
appropriate for inference problems, in the situation at
hand the prior information is so apparent that approx-
imating it seems better than ignoring it. Accordingly,
we establish the well-known Bayesian formalism. De-
noting pixel sites s = [s; s2] in an image domain N,
and defining matrices of class labels x = {z; }sen, tak-
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Figure 2: An image detail having network and plage elements is shown with threshold and MRF labelings.

ing values in the set {P,N,B}, and observed intensities
¥, the maximum a posteriori (MAP) decision rule is

% = argmax log P(y | x) + log P(x) . (1)

In practice, the first term forces fidelity to the data

while the second penalizes unlikely rough labelings.
Prior models P(x) may be specified in many ways.

We have used the Markov field smoothness priors
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P(x) =

for § > 0 [1]. The constant Z is chosen to normalize
the probability mass function, and the sum extends
over ‘neighboring’ sites in V. On our rectangular grid,
sites are neighbors if they adjoin vertically, horizon-
tally, or diagonally. As 8 drops, rougher labelings are
allowed, and the uniform distribution is obtained at
8 =0.

The remaining ingredient is the likelihood

Ply|x) = l_IPys|ar:S . (3)

The three densities P(y|x) can be estimated from la-
beled images supplied by scientists. We have found
that the lognormal distribution is a good model for
the per-class intensities.

The objective function of (1) becomes
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If the class variances are identical, and 8 = 0, we
recover the threshold rule currently used in practice.

To tackle the optimization problem for general 3 we
have followed the well-known Gibbs sampler scheme
with Ripley’s ‘clock’ modification [6, p. 99]. Sample
results are shown in figure 2. The first panel shows
a piece of a chromospheric image from January 1980

with a plage in the lower-right corner. Beside this is
the corresponding threshold segmentation. The abun-
dant speckle is consistent with the implicit prior that
is uniform over all labelings. In the final panel is the
MAP segmentation with MRF prior at 8 = 0.7. The
estimate is found by the standard Gibbs sampler ap-
proach with temperature lowered in steps (discretized
cooling with a geometric rate) over 800 image sweeps.
We note that the MAP/MRF segmentation eliminates
many of the tiny gaps in the large plage and makes the
network structure more apparent.

3 Spatial Descriptions

Now we address the second of the concerns raised
in the introduction, that of representing and analyz-
ing plage shape. In contrast to the essentially pixel-
scale characteristics of the network/background inter-
play, plages are high-level phenomena which are not
well-captured by pixel-level rules. Following Grenan-
der (e.g., [4]), we pursue a hierarchical representation
of plages. It is convenient to embed the pixel sites
N in a continuum N = [0, 1]2. To represent a plage,
or a cluster of related plages, we propose a tent-like
structure defined by a triangulated planar graph

G=(V,E ) (1)
VCN a vertex set

Ec N? an edge relation

h:V —[0,1] a height function

The height function extends to all of N by linear in-
terpolation across the faces of the pyramids. This
structure models the “degree of membership” of a
given pixel in the plage class and allows the binding
of nearby plage regions into one coherent object. We
note that, if the height function is thresholded at a
given level, the resulting shape is a cluster of regions
bounded by polygons — the same way scientists cur-
rently delimit plage regions manually. See figure 3.
To define a probability distribution on membership
functions, we generate each as the interpolated version
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Figure 3: A perspective view of a ridge structure hav-
ing about twenty vertices.

of the Delaunay triangulation of independently chosen
points in N. These points comprise V', and FE is gener-
ated mechanically as the triangulation of V. Heights
are then assigned independently to the members of V'
to form tie-points. The probability density of such a
membership function is induced by the one on V:

P(h) =z te 7 eardVi) (5)

We have assumed the members of V' are chosen ac-
cording to the uniform distribution on N, and that
the heights are uniform on [0,1]. A computational
advantage of this scheme is that additions, deletions,
and adjustments of one vertex have a local effect on
the triangulation. Also, the penalty in log-probability
paid by joining two separated graphs is the sum of
component penalties, so that separated plages co-exist
independently.

Incorporating the new structure into the existing
MRF model is done, in brief, by letting the height
function h(s) favor the event {x, = P}. Specifically,
let there be a Markov relationship between the three
levels of the stochastic model so that

P(h,x,y) = P(h)P(x|h)P(y | %) (6)
In addition to P(h) defined in (5), we let
—log P(x|h) = Kp, + (7)
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where K} is an appropriate normalizing constant.
(The corresponding constant log(27)/2 in the second
equation has been dropped.) In this way the height
function biases the corresponding label in favor of the
plage class. This conditional probability model allows
us to generate random height functions, labelings, and
images that are more physically reasonable than the
unadorned MRF scheme, because larger-scale image
characteristics are honored.

This describes the ‘synthesis problem’ (cf. [4]); the
complementary ‘analysis problem’ focuses on the pos-
terior

P(h,x|y) = P(h,x,y)/P(y) < P(h,x,y)

As in section 2, we pursue the MAP estimate of the
combined description. One technical difficulty is the
normalizing constant Kj; which figures in the pos-
terior. In what follows, we have assumed that the
variation of K with respect to h is negligible com-
pared to the designed variation in P(h,x,y), leading
to an approximate posterior 7(h, x) with negative log-
probability
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having a minimum at (h,%). Inference proceeds in
much the same way section 2, except that two sorts of
variables must be varied. To simplify the discussion,
we henceforth consider only updates to h with x held
fixed; the other case proceeds as before.

Updates of h correspond to altering the vertex list,
and are done with simple Metropolis-Hastings steps [2]
because the conditional distributions needed by the
Gibbs sampler are intractable. Such a step proposes
a new state h’, computes p(h,h’) := w(h',x)/m(h,x),
and probabilistically accepts or rejects h' largely on
this basis; this results in a Markov transition kernel
Q(v,dv") on the composite vertex-list set V = Uy V.
If Q is designed properly, it has the posterior 7« as its
stationary distribution. Beyond the obvious restric-
tions that @ be aperiodic and irreducible, it is suffi-
cient that ) maintains detailed balance: under m, the
mass moving directly from A C V to B equals that
moving in the reverse direction.

First we describe a set of operators complete
enough to ensure irreducibility. A ‘vertex move’ op-
erator M chooses a vertex at random and displaces it
randomly. A ‘vertex raise’ operator R raises or low-
ers a vertex at random. To allow movement between
the constituent spaces of V, we have ‘add’ operators
Ay, and corresponding ‘kill’ operators A, which move
back and forth between Vi and V1.

Next, we define a transition kernel Q on the ba-
sis of these operators; this kernel is a ‘hybrid sam-
pler’ composed of each of the three move-types (M,
R, A/A"). In each epoch in the simulation, one such
move-type is chosen at random. Ensuring detailed bal-
ance within each move-type yields detailed balance in
the superposition. Obtaining detailed balance in types
M and R is trivial provided the distribution of the ad-
ditive displacement is symmetric. (Modular addition
will eliminate edge conditions.) Operators M and R
are accepted with probability min(1, p(h, h')).

Obtaining detailed balance of Ay, Aj. is more com-
plex because the flow between two different Euclidean
spaces must be equalized. Following recent work of
P. Green [3], we find the chance of accepting a pro-
posed deletion of v* via Aj should be the lesser of
unity and

P(select Ay)

« _Pv (v*)
P(select Aj)

1/(k+1)

p(h, 1) X (10)
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Figure 4: Plage probability; mean inferred membership function; standard deviation of membership functions

(Here p, is a density used to choose a new point for an
add operation; in practice it is used to focus attention
on interesting parts of the image.) The intuition is
simple: the more likely it is to attempt deletion, the
less likely we must be to accept it. The more likely it
is to add v* back in, the more willing we are to delete
it. The factor of k+1 comes from the random choice of
which vertex to delete: when v* is added via Ay, there
is one chance in k£ + 1 that a subsequent application
of A} will consider v* for deletion.

Initialization is important since a small feature may
become hidden in a large triangle so that that 7 is not
increased by any single vertex addition. The initial-
ization procedure should therefore ensure locality of
the effects of changes. A procedure that has proven
effective is to initially replace the term of 7 enforcing
agreement between h and the plage probability with
one penalizing per-triangle inhomogeneity:

> ITlgr(1—gqr) ,with gp:=|T|"" Y 1(z; =P)
T seT

and |T'| the number of pixels in triangle 7. The mod-
ified criterion subdivides the image during an initial
phase of 1000 epochs; then it is gradually replaced
by the final criterion in a secondary stage twice this
length. By the end of the second stage, a satisfactory
basin of 7(h,x) has been found and the Metropolis
iteration proceeds as described above.

Finally, to speed the sampling process the indica-
tor 1(xzs = P) above is replaced with its expectation
P(zs; = P|y). This is analogous to the use of condi-
tional expectation in the ICE algorithm of A. Owen [5]
and allows the sampler to directly access the uncer-
tainty in the label, instead of reacting to its proba-
bilistic fluctuations as Gibbs iterations proceed.

Sample results for fitting a rather complex plage
pair are shown in figure 4. Fits with v =2, a = 0.4
were obtained from a total of 30000 Metropolis pro-
posals taking 170 seconds of computation time on a
Sun Ultrasparc. Roughly 175 proposals/sec are made
by exploiting the significant cancellation in the quo-
tient p(h,h’'): only the changed triangles need be re-
considered. As desired, the membership function has

suppressed the small-scale features and identified the
two main objects and their principal outliers. The
right-hand plot shows most of the variability in the
fits is at the boundary, especially where a sharp pro-
jection occurs.
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