Tests and Tolerances for High-Performance Software-Implemented Fault Detection

Michael Turmon, Member, IEEE Robert Granat, Member, IEEE
Daniel S. Katz, Senior Member, IEEE and John Z. Lou

Abstract—We describe and test a software approach to fault detection in common numerical algorithms. Such result checking or algorithm-based fault tolerance (ABFT) methods may be used, for example, to overcome single-event upsets in computational hardware or to detect errors in complex, high-efficiency implementations of the algorithms. Following earlier work, we use checksum methods to validate results returned by a numerical subroutine operating subject to unpredictable errors in data. We consider common matrix and Fourier algorithms which return results satisfying a necessary condition having a linear form; the checksum tests compliance with this condition. We discuss the theory and practice of setting numerical tolerances to separate errors caused by a fault from those inherent in finite-precision floating-point calculations. We concentrate on comprehensively defining and evaluating tests having various accuracy/computational burden tradeoffs, and we emphasize average-case algorithm behavior rather than using worst-case upper bounds on error.

Index Terms—Algorithm-based fault tolerance, result checking, error analysis, aerospace, parallel numerical algorithms.

1 Introduction

THE work in this paper is motived by a specific problem — detecting radiation-induced errors in spaceborne commercial computing hardware — but the results are broadly applicable. Our approach is useful whenever the output of a numerical subroutine is suspect, whether the source of errors is external or internal to the design or implementation of the routine. The increasing sophistication of computing hardware and software makes error detection an important issue. On the hardware side, growing design complexity has made subtle bugs or inaccuracies difficult to detect [1]. Simultaneously, continuing reductions in microprocessor feature size will make hardware more vulnerable to environmentally-induced upsets [2]. On the software side there are similar issues which come from steadily increasing design complexity [3], [4]. There are also new challenges resulting from decomposition and timing issues in parallel code and the advent of high-performance algorithms whose execution paths are determined adaptively at runtime (e.g., ‘codelets’ [5]).

To substantiate this picture, consider NASA’s Remote Exploration and Experimentation (REE) project [6]. The project aims to enable a new type of scientific investigation by moving commercial supercomputing technology into space. Transferring such computational power to space would enable highly autonomous missions with substantial on-board analysis capability, mitigating the control latency that is due to fundamental light-time delays, as well as bandwidth limitations in the link between spacecraft and ground stations. To do this, REE does not desire to develop a single computational platform, but rather to define and demonstrate a process for rapidly transferring commercial high-performance hardware and software into fault-tolerant architectures for space.

Traditionally, spacecraft components have been radiation-hardened to protect against single event upsets (SEUs) caused by galactic cosmic rays and energetic protons. Hardening lowers clock speed and may increase power requirements. Even worse, the time needed to radiation-harden a component guarantees both that it will be outdated when it is ready for use in space, and that it will have a high cost which must be spread over a small number of customers. Use of commodity off-the-shelf (COTS) components in space, on the other hand, implies that faults must be handled in software.

The presence of SEUs requires that applications be self-checking, or tolerant of errors, as the first layer of fault-tolerance. Additional software layers can protect against errors that are not caught by the application [7]. For example, one such layer automatically restarts programs which have crashed or hung. This works in conjunction with self-checking routines: if an error is detected, and the computation does not yield correct results upon retry, an exception is raised and the program may be restarted. Since the goal of the project is to take full advantage of the computing power of the hardware, simple process replication is undesirable.

In this paper, we focus on detecting SEUs in the application layer. An SEU affecting application data is particularly troublesome because it would typically have fewer obvious consequences than an SEU to code, which would be expected to cause an exception. (Memory will be error-detecting and correcting, so faults to memory will be largely screened: most data faults will therefore affect the microprocessor or its cache.) Fortunately, due to the locality of scientific codes, much of their time is spent in certain common numerical subroutines. For example, about 70% of the processing in one of the REE science applications, a Next Generation Space Telescope [8] phase retrieval algorithm [9], is spent in fast Fourier transforms. This characteristic of the applications motivates our emphasis on correctness.
testing of individual numerical subroutines.

Following the COTS philosophy laid out above, our general approach has been to wrap existing parallel numerical libraries (ScalAPACK [10], PLAPACK [11], FFTW [5]) with fault-detecting middleware. We can treat subroutines that return results satisfying a necessary condition having a linear form; the checksum tests compliance with this necessary condition. Here we discuss the theory and practice of defining tests and setting numerical tolerances to separate errors caused by a fault from those inherent in floating-point calculations.

To separate these two classes of errors, we are guided by well-known upper bounds on error propagation within numerical algorithms. These bounds provide a maximum error that can arise due to roundoff effects — even though the bounds overestimate the true error, they do show how errors scale depending on algorithm inputs. Adapting these bounds to the fault tolerant software setting yields a series of tests having different efficiency and accuracy attributes. To better understand the characteristics of the tests we develop, we perform controlled numerical experiments.

The main contributions of this paper are:

• Comprehensive development of input-independent tests discriminating floating-point roundoff error from fault occurrence.

• Within this context, emphasis on average-case error estimates, rather than upper bounds, to set the fault threshold. This can result in orders of magnitude more room to detect faults, see section 5.

• Validation of the tests by explicitly using standard decision-theoretic tools: the probabilities of false alarm and detection, and their parametric plot via a receiver operating characteristic (ROC) curve.

The sections of this paper continue as follows: we introduce our notation and set out some general considerations that are common to the routines we study. After that, we examine how roundoff errors propagate through numerical routines and develop fault-detection tests based on expected error propagation. Next, we discuss the implementation of our tests and explore their absolute and relative effectiveness via simulation experiments. We close by offering conclusions and discussing possible future research.

1.1 Notation

Matrices and vectors are written in uppercase and lowercase roman letters respectively; \(A^T \) is the transpose of the matrix \(A \) (conjugate transpose for complex matrices). Any identity matrix is always \(I \); context provides its dimension. A real (resp. complex) matrix \(A \) is orthogonal (resp. unitary) if \(A A^T = I \). A square matrix is a permutation if it can be obtained by reordering the rows of \(I \). The size of a vector \(v \) is measured by its \(p \)-norm \(\| v \|_p \), of which the three most useful cases are

\[
\| v \|_1 = \sum_i |v_i|, \quad \| v \|_\infty = \max_i |v_i|, \quad \| v \|_2 = \left(\sum_i |v_i|^2 \right)^{1/2}.
\]

The simplest norm on matrices is the Frobenius norm

\[
\| A \|_F = \left(\sum_{i,j} |a_{ij}|^2 \right)^{1/2}.
\]

Other matrix norms may be generated using the vector \(p \)-norms, and they are computed as

\[
\| A \|_1 = \max_j \sum_i |a_{ij}|, \quad \| A \|_\infty = \max_i \sum_j |a_{ij}|
\]

\[
\| A \|_2 = \sigma_{\max}(A).
\]

The last is the largest singular value of \(A \) and is not trivial to find. All other vector and matrix norms are computed in time linear in the number of matrix elements. All the norms differ only by factors depending only on matrix size and may be regarded as equivalent; in this context write the unadorned \(\| \cdot \| \).

The submultiplicative property holds for each of these norms: \(\| Av \| \leq \| A \| \| v \| \) and \(\| AB \| \leq \| A \| \| B \| \). See [12, §2.2, 2.3] or [13, §6.2] for more on all these properties. The numerical precision of the underlying hardware is captured by \(u \), the difference between unity and the next larger floating-point number (\(u = 2.2 \times 10^{-16} \) for 64-bit IEEE floating point).

2 General Considerations

We are concerned with these linear operations:

• Product: find the product \(AB = P \), given \(A \) and \(B \).

• QR decomposition: factor a square \(A = QR \), where \(Q \) is an orthogonal matrix and \(R \) is upper triangular.

• Singular value decomposition: factor a square \(A = UDV^T \), where \(D \) is diagonal and \(U, V \) are orthogonal matrices.

• LU decomposition: factor \(A = PLU \) with \(P \) a permutation, \(L \) unit lower-triangular, \(U \) upper-triangular.

• System solution: solve for \(x \) in \(Ax = b \) when given \(A \) and \(b \).

• Matrix inverse: given \(A \), find \(B \) such that \(AB = I \).

• Fourier transform: given \(x \), find \(y \) such that \(y = Wx \), where \(W \) is the matrix of Fourier bases.

• Inverse Fourier transform: given \(y \), find \(x \) such that \(x = n^{-1}W^T y \) where \(W \) is the \(n \times n \) matrix of Fourier bases.

We note that because standard implementations of multidimensional Fourier transform use one-dimensional transform as a subroutine, a multidimensional transform will inherit a finer-grained robustness by using a fault-tolerant one-dimensional subroutine. In this case, fault tolerance need only be implemented at the base level of the computation. Alternatively, one could use appropriate postconditions at the top level. (E.g., the algorithm \(FFT \) given an input matrix \(X \), produces a transform \(Y \) such that \(Y = WXW^T \).

Table I summarizes the operations and the inputs and outputs of the algorithms which compute them. Each of these operations has been written to emphasize that some relation holds among the subroutine inputs and its computed outputs; we call this the postcondition. The postcondition for each operation is given in Table I. In several cases, indicated in the table, this postcondition is a necessary and sufficient condition (NASC), and thus completely characterizes the subroutine’s task. (To see this, consider for example \(inv \): if its output \(B \) is such that \(AB = I \), then \(B = A^{-1} \).) For the other operations, the postcondition is only a necessary condition and valid results must enjoy other properties as well — typically a structural constraint like orthogonality.
TABLE I

<table>
<thead>
<tr>
<th>Name</th>
<th>Signature</th>
<th>Postcondition</th>
<th>NASC?</th>
<th>Extra conditions if no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>$P = \text{mult}(A, B)$</td>
<td>$AB = P$</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>QR decomposition</td>
<td>$(Q, R) = \text{qr}(A)$</td>
<td>$A = QR$</td>
<td>N</td>
<td>Q orthogonal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R upper triangular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singular value</td>
<td>$(U, D, V) = \text{svd}(A)$</td>
<td>$A = UD^T V$</td>
<td>N</td>
<td>D diagonal</td>
</tr>
<tr>
<td>decomposition</td>
<td></td>
<td>U, V orthogonal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LU decomposition</td>
<td>$(P, L, U) = \text{lud}(A)$</td>
<td>$A = PLU$</td>
<td>N</td>
<td>P a permutation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L unit lower-triangular</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>U upper-triangular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System solution</td>
<td>$x = \text{solve}(A, b)$</td>
<td>$Ax = b$</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Matrix inverse</td>
<td>$B = \text{inv}(A)$</td>
<td>$AB = I$</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Fourier transform</td>
<td>$y = \text{fft}(x)$</td>
<td>$y = Wx$</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Inverse Fourier transform</td>
<td>$x = \text{ifft}(y)$</td>
<td>$x = n^{-1} W^T y$</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

The additional properties needed in this case are given in the table but we do not check them as part of the fault test. (In the case of lud, it is customary to store L and U in opposite halves of the same physical matrix, so their structural properties are automatically established.) In either case, identifying and checking the postcondition provides a powerful way to verify the proper functioning of the subroutine.

Before proceeding to examine these operations in detail, we mention two general points involved in designing postcondition-based fault detection schemes for other algorithms. Suppose for definiteness that we plan to check one $m \times n$ matrix. Any reasonable detection scheme must depend on the content of each matrix entry, otherwise some entries would not be checked. This implies that simply performing a check (e.g., computing a checksum of an input or output) requires $O(mn)$ operations. Postcondition-based fault detection schemes thus lose their attractiveness for operations taking $O(mn)$ or fewer operations (e.g. trace, sum, and 1-norm) because it is simpler and more directly informative to achieve fault-tolerance by repeating the computation. (This is an illustration of the "little-oh rule" of [14].) The second general point is that, although the postconditions above are linearly-checkable equalities, they need not be. For example, $\|A\|_2 = \sigma_{\text{max}}(A)$ is bounded by functions of the 1-norm and the ∞-norm, both of which are easily computed but not of linear form. One could test a computation’s result by checking postconditions that involve nonlinear functions of the inputs, expressed either as equalities or as inequalities. None of the operations we consider requires this level of generality.

Indeed, the postconditions considered in this paper generically involve comparing two linear maps, which are known in factored form

$$L_1 L_2 \cdots L_p w \equiv R_1 R_2 \cdots R_q w \quad .$$

(1)

This check can be done exhaustively via n linearly independent probes for an $n \times n$ system — which would typically introduce about as much computation as recomputing the answer from scratch. On the other hand, a typical fault to data fans out across the matrix outputs, and a single probe would be enough to catch most errors:

$$L_1 L_2 \cdots L_p w \equiv R_1 R_2 \cdots R_q w \quad .$$

(2)

for some probe vector w.

For certain operations (solve, inv) such postcondition checks are formalizations of common practice. Freivalds [15] used randomized probes w to check multiplication. This approach, known as result-checking (RC), is analyzed in a general context by Blum and Kannan [16]; for further analysis see [1], [14], [17]. Use of multiple random probes can provide probabilistic performance guarantees almost as good as the exhaustive scheme indicated in eqn. 1, without performing all n probes.

Linear checks on matrix operations are also the basis for the checksum-augmentation approach introduced by Huang and Abraham [18] for systolic arrays, under the name algorithm-based fault tolerance (ABFT). The idea has since both moved outside its original context of systolic array computation, and has also been extended to LU decomposition [19], QR and related decompositions [20], [21], SVD, FFT [22], [23], and other algorithms. The effects of multiple faults, and faults which occur during the test itself, have been explored through experiment [24]. Fault location and correction, and use of multiple probe vectors have also been studied in the ABFT context [25], [26].

An earlier paper [20] uses roundoff error bounds to set the detection threshold for one algorithm, the QZ decomposition. Other work ([27], [28]) uses running error analysis to derive methods for maintaining roundoff error bounds for three algorithms. Running error analysis is a powerful technique [13, §3.3] with the potential to give accurate bounds, but requires modifying the internals of the algorithm: we have preferred to wrap existing algorithms without modification. As we shall see, norm-based bounds provide excellent error-detection performance which reduces the need for running error analysis in many applications. Error bounds have also been used to derive input-independent tests for system solution [29]; the paper cleverly builds in one round of iterative refinement both to enable usable error bounds, and also to allow correction of errors in the first computed solution. In contrast to the above papers, our
work emphasizes average-case bounds and attempts to provide a comprehensive treatment of error detection for many operators.

There are two designer-selectable choices controlling the numerical properties of the fault detection system in (2): the checksum weights \(w \) and the comparison method indicated by \(\triangleleft \). When no assumptions may be made about the factors of (2), the users with more knowledge of expected factors. see \([30]\). We are content to let \(w \) be the vector of all ones. For the matrix operations, on the sec. 5.3 that this choice is far superior to the vector of all ones \(w \) elements of this \(w \) of (2) should not vary greatly in magnitude.

For Fourier transforms, this yields a weak condition on \(w \): it should at least be chosen so that neither the real or imaginary parts of \(w \), nor those of its Fourier transform, vary radically in magnitude. This rules out many simple functions (like the vector of all ones) which exhibit symmetry and have sparse transforms. For FFT checksum tests, we generated a fixed test vector of \(w \) which exhibit symmetry and have sparse transforms. This rules out many simple functions (like the vector of all ones) which exhibit symmetry and have sparse transforms.

For these reasons, numerical analysts generally place little emphasis on leading constants that are a function of dimension. One heuristic is to replace the dimension-dependent constants in the error bound by their square root \([13, \S 2.6]\), based on a central limit theorem argument applied to the sum of individual roundoff errors. (The heuristic is justified on theoretical grounds when a randomized detection algorithm \([14, \text{alg.} 2.1.1]\) is used under certain conditions.) Because of these uncertainties, we give tests involving dimensional constants only when the bound is known to reflect typical behavior.

Result 1 (\([12, \S 2.4.8]\)) Let \(\hat{P} = \text{mult}(A, B) \) be computed using a dot-product, outer-product, or gauxy-based algorithm. The error matrix \(E = \hat{P} - AB \) satisfies

\[
\|E\|_\infty \leq n\|A\|_\infty\|B\|_\infty u
\]

where \(n \) is the dimension shared by \(A \) and \(B \).

Corollary 2: An input-independent checksum test for \text{mult} is

\[
d = \hat{P}w - ABw
\]

\[
\|d\|_\infty / (\|A\|_\infty\|B\|_\infty\|w\|_\infty) \gtrsim \tau u
\]

where \(\tau \) is an input-independent threshold.

The test is expressed as a comparison (indicated by the \(\gtrsim \) relation) with a threshold; the latter is a scaled version of the floating-point accuracy. If the discrepancy is larger than \(\tau u \), a fault would be declared, otherwise the error is explainable by roundoff.

Proof: The difference \(d = Ew \) so, by the submultiplicative property of norms and result 1,

\[
\|d\|_\infty \leq \|E\|_\infty\|w\|_\infty \leq n\|A\|_\infty\|B\|_\infty\|w\|_\infty u
\]

and the dependence on \(A \) and \(B \) is removed by dividing by their norms. The factor of \(n \) is unimportant in this context, as noted in the remark beginning the section.

Result 3 (\([13, \text{thms.} 18.4, 18.9]\)) Let \(\hat{Q}, \hat{R} = \text{qtr}(A) \) be computed using a Givens or Householder QR decomposition algorithm applied to the \(m \times n \) matrix \(A, m \geq n \). The backward error matrix \(E \) defined by \(A + E = \hat{Q}\hat{R} \) satisfies

\[
\|E\|_F \leq \rho m^2n\|A\|_F u
\]

where \(\rho \) is a small constant for any matrix \(A \).

Corollary 4: An input-independent checksum test for \text{qtr} is

\[
d = \hat{Q}\hat{R}w - Aw
\]

\[
\|d\|_F / (\|A\|_F\|w\|_F) \gtrsim \tau u
\]

where \(\tau \) is an input-independent threshold.
Proof: Let \(d = \hat{Q} \hat{R} w - A w \); then \(d = E w \) where \(E \) is the error matrix bounded in result 3. We claim that an input-independent checksum test for \(K \) is
\[
\|d\|_F / (\|A\|_F \|w\|_F) \geq \gamma u .
\] (9)

Indeed, by the submultiplicative property and result 3,
\[
\|d\|_F \leq \|E\|_F \|w\|_F \leq \rho^2 n \|A\|_F \|w\|_F \|u\|
\]
and the dependence on \(A \) is removed by dividing by its norm. The constant \(\rho \) is independent of \(A \), the dimensional constants are discarded, and the claim follows. \(\square \)

To convert this test, which uses Frobenius norm, into one using the infinity-norm, recall that these two norms differ only by constant factors which may be absorbed into \(\tau \).

Result 5 ([12],§5.5.8) Let \((\tilde{U}, \tilde{D}, \tilde{V}) = \text{svd}(A)\) be computed using a standard singular value decomposition algorithm. The forward error matrix \(E \) defined by \(A + E = \tilde{U} \tilde{D} \tilde{V}^T \) satisfies
\[
\|E\|_2 \leq \rho \|A\|_2 u
\] (10)
where \(\rho \) is a small constant for any matrix \(A \).

Corollary 6: An input-independent checksum test for \text{svd} as applied to any matrix is
\[
d = \tilde{U} \tilde{D} \tilde{V}^T w - A w
\] (11)
\[
\|d\|_\infty / (\|A\|_\infty \|w\|_\infty) \geq \tau u
\] (12)
where \(\tau \) is an input-independent threshold.

Proof: Let \(d = \tilde{U} \tilde{D} \tilde{V}^T w - A w \); then \(d = E w \) where \(E \) is the error matrix bounded in result 5. We claim that an input-independent checksum test for \text{svd} is
\[
\|d\|_2 / (\|A\|_2 \|w\|_2) \geq \tau u
\] (13)
Indeed, by the submultiplicative property and result 5,
\[
\|d\|_2 \leq \|E\|_2 \|w\|_2 \leq \rho \|A\|_2 \|w\|_2 \|u\|
\]
and the dependence on \(A \) is removed by dividing by its norm. The constant \(\rho \) is neglected, and the claim follows. This test, which uses 2-norm, may be converted into one using the infinity-norm as with \(K \). \(\square \)

The test for SVD has the same normalization as for QR decomposition.

For some of the remaining operations, we require the notion of a numerically realistic matrix. The reliance of numerical analysts on some algorithms is based on the rarity of certain pathological matrices that cause, for example, pivot elements in decomposition algorithms to grow exponentially. Note that matrices of unfavorable condition number are not less likely to be numerically realistic. (Explaining the pervasiveness of numerically realistic matrices is “one of the major unsolved problems in numerical analysis” [13,p.180] and we do not attempt to summarize research characterizing this class.) In fact, even stable and reliable algorithms can be made to misbehave when given such unlikely inputs. Because the underlying routines will fail under such pathological conditions, we may neglect them in designing an fault tolerant system: such a computation is liable to fail even without faults. Accordingly, certain results below must assume that the inputs are numerically realistic to obtain usable error bounds.

Result 7 ([12],§3.4.6) Let \((\hat{P}, \hat{L}, \hat{U}) = \text{lau}(A)\) be computed using a standard LU decomposition algorithm with partial pivoting. The backward error matrix \(E \) defined by \(A + E = \hat{P} \hat{L} \hat{U} \) satisfies
\[
\|E\|_\infty \leq 8n^3 \rho \|A\|_\infty \|u\|
\] (14)
where the growth factor \(\rho \) depends on the size of certain partial results of the calculation.

Trefethen and Bau [31, §22] describe typical behavior of \(\rho \) in some detail, finding that it is typically of order \(\sqrt{n} \) for numerically realistic matrices. We note in passing that this is close to the best possible bound for the discrepancy, because the error in simply writing down the matrix \(A \) must be of order \(\|A\| \|u\| \).

The success of numerical linear algebra is in finding a way to factor realistic matrices \(A \) while incurring only a small penalty \(\rho \) beyond this lower bound.

Corollary 8: An input-independent checksum test for \text{lau} as applied to numerically realistic matrices is
\[
d = \hat{P} \hat{L} \hat{U} w - A w
\] (15)
\[
\|d\|_\infty / (\|A\|_\infty \|w\|_\infty) \geq \tau u
\] (16)
where \(\tau \) is an input-independent threshold.

Proof: We have \(d = E w \) so, by the submultiplicative property of norms and result 7,
\[
\|d\|_\infty \leq \|E\|_\infty \|w\|_\infty \leq 8n^3 \rho \|A\|_\infty \|w\|_\infty \|u\|
\]
As before, the factor of \(8n^3 \) is unimportant in this calculation. For numerically realistic matrices, the growth factor \(\rho \) is also negligible, and the indicated test is recovered by dividing by the norm of \(A \). \(\square \)

Result 9 ([12],§3.4.6) Let \(\hat{x} = \text{solve}(A, b) \) be computed using a standard LU decomposition algorithm with partial pivoting, and back-substitution. The backward error matrix \(E \) defined by \((A + E)\hat{x} = b \) satisfies
\[
\|E\|_\infty \leq 8n^3 \rho \|A\|_\infty \|u\|
\] (17)
with \(\rho \) as in result 7.

In this case, the result is itself a vector: this vector is evaluated directly within the postcondition \(Ax = b \), omitting a checksum operation.

Corollary 10: An input-independent test for \text{solve} as applied to numerically realistic matrices is
\[
d = A \hat{x} - b
\] (18)
\[
\|d\|_\infty / (\|A\|_\infty \|\hat{x}\|_\infty) \geq \tau u
\] (19)
where \(\tau \) is an input-independent threshold.

Proof: We have \(d = -E \hat{x} \) so, by the submultiplicative property of norms and result 9,
\[
\|d\|_\infty \leq \|E\|_\infty \|\hat{x}\|_\infty \leq 8n^3 \rho \|A\|_\infty \|\hat{x}\|_\infty \|u\|
\]
As before, leading factors are dropped and the indicated test is recovered by dividing. \(\square \)
There are several ways to compute an inverse matrix, typically based on an initial factorization $A = PLU$. The LINPACK xGEDI, LAPACK xGETRI, and Matlab inv all use the same variant which next computes U^{-1} and then solves $BPL = U^{-1}$ for B.

Result 11 ([13], §13.3.2) Let $\hat{B} = \text{inv}(A)$ be computed as just described. Then the left residual satisfies

$$\| \hat{B}A - I \| \leq 8n^3 \rho \| \hat{B} \| \| A \| \| u \|$$

with ρ as in result 7.

Proof: The proof cited derives the elementwise bound

$$| \hat{B}A - I | \leq 2n | \hat{B} | | L | | U | u$$

where $| M |$ is the matrix of absolute values of the entries of M, and the inequality holds elementwise. Just as for $1u$, one can bound $l_{ij} \leq 1$ and $u_{ij} \leq \rho | A | \| u \|$, which allows conversion of the elementwise bound into the norm bound at the end of §13.3.2.

Corollary 12: An input-independent checksum test for inv as applied to numerically realistic matrices is

$$d = \hat{B}A w - w$$

$$\| d \| / (\| A \| \| \hat{B} \| \| w \|) \geq \tau u$$

where τ is an input-independent threshold.

Proof: Using the submultiplicative property,

$$\| d \| = \| (\hat{B}A - I)w \| \leq \| \hat{B}A - I \| \| w \|$$

and the test follows on substituting result 11.

We remark that this bound on discrepancy, larger than that for l_{ij} bound where $| x \|_G ED I$ based on an initial factorization w.

Result 11 (Corollary 14) Let $\hat{B} = \text{inv}(A)$ be computed as just described. Then the left residual satisfies

$$\| \hat{B}A - I \| \leq 8n^3 \rho \| \hat{B} \| \| A \| \| u \|$$

Corollary 15: An input-independent checksum test for iff t is

$$d = (\hat{x} - n^{-1}W^T y)^T w$$

$$| d | / (\log n \| y \| \| w \|) \geq \tau u$$

where τ is an input-independent threshold.

Note that scaling by n^{-1} in iff t removes a factor of n from the test’s normalization relative to fft.

4 Implementing the Tests

It is straightforward to transform these results into algorithms for error detection via checksums. The principal issue is computing the desired norms efficiently from inputs to, or results of, the desired calculation. For example, in the matrix multiply, instead of computing $\| A \| \| B \|$, it is more efficient to compute $\| \hat{P} \|$ which equals $\| AB \|$ under fault-free conditions. By the submultiplicative property of norms, $\| AB \| \leq \| A \| \| B \|$, so this substitution always underestimates the upper bound on roundoff error, leading to false alarms. On the other hand, we must remember that the norm bounds are only general guides anyway. All that is needed is for $\| AB \|$ to scale as does $\| A \| \| B \|$: the unknown scale factor can be absorbed into τ.

Taking this one step farther, we might compute $\| \hat{P} w \|$ as a substitute for $\| A \| \| B \| \| w \|$. In fact, $\hat{P} w$ would often be computed anyway as a means of checking the integrity of \hat{P} later, so the result check would come at only $O(n)$ additional cost. On the other hand, the simple vector norm runs an even greater risk of underestimating the bound, especially if w is nearly orthogonal to the product, so it is wise to use instead $\lambda \| w \| + \| \hat{P} w \|$ for some problem-dependent $\lambda > 0$. Extending this reasoning to the other operations yields the comparisons in table II.

The tests all proceed from the indicated difference matrix Δ by computing the norm

$$\delta = \| \Delta w \|$$

scaling it by a certain factor σ, and comparing to a threshold. The matrix Δ is of course never explicitly computed because it is more efficient to multiply w into the factors comprising Δ. The naive test is the un-normalized ($\sigma = 1$) comparison

$$T 0 : \delta / \| w \| \geq \tau u$$

The other tests have input-sensitive normalization as summarized in table II. First, the ideal test

$$T 1 : \delta / (\sigma_1 \| w \|) \geq \tau u$$

is the one recommended by the theoretical error bounds of section 3, but may not be computable using the values on hand (e.g., for inv).

The other two tests are based on quantities computed by the algorithm and may also be suggested by the reasoning above. First, the matrix test

$$T 2 : \delta / (\sigma_2 \| w \|) \geq \tau u$$

involves a matrix norm (except for solve, fft and iff t) of computed algorithm outputs. When more than one variant of the
5 Results Under Simulated Faults

We describe the simulation setup, present results for the matrix operations (mult, lu, svd, qr, and inv) under two input-matrix distributions, and finally show results for the Fourier transform using various probe vectors w. These simulations are intended to test the effectiveness of the checksum technique for fault tolerance, as well as to sketch the relative behaviors of the tests described above. Due to the special nature of the populations of test matrices, and the shortcomings of the fault insertion scheme, these results should be taken as a good estimate of relative performance, and a rough estimate of ultimate absolute performance.

5.1 Experimental Setup

In essence a population of random matrices is used as input to a given computation; faults are injected in half these computations, and a checksum test is used afterward to attempt to identify the faulty computations. For the matrix operations, random test matrices A of a given condition number κ are generated by the rule

$$A = 10^a U D_k V^T.$$

(33)

The random matrices U and V are the orthogonal factors in the QR factorization of two square matrices with entries that are independent unit normal random variables. (They are therefore random orthogonal matrices from the Haar distribution [32].) The diagonal matrix D_k is filled in by choosing independent uniformly distributed random singular values, rescaled such that the largest singular value is one and the smallest is $1/\kappa$. These matrices all have 2-norm equal to unity; the overall scale is set by a which is chosen uniformly at random between -8 and +8. A total of $2N, 64 \times 64$ matrices are generated by independent draws from the rule (33). Equal numbers of matrices for each κ in $\{2^1, ..., 2^{20}\}$ are generated over the course of the $2N$ draws. Vector inputs for FFT have no concept of condition number and they are generated by

$$v = 10^a (u_1 + \sqrt{-1} u_2).$$

(34)

Here, a is as above, and u_1 and u_2 are vectors of $n = 64$ independent unit normal variables.

Faults are injected in half of these runs (N of $2N$ total) by changing a random bit of the algorithm’s state space at a random point of execution. Specifically, the matrix algorithms when given $n \times n$ inputs generally have n stages and operate in place on an $n \times n$ matrix. The Fourier transform has $\log_2 n$ stages which operate in place on the n-length vector. So for testing, the algorithm is interrupted at a random stage, and its workspace perturbed by altering exactly one bit of the 64-bit representation of one of the matrix/vector entries a to produce a new entry, flip(a). For example, LU consists of application of n Gauss transformations. To inject a fault into LU, it is interrupted between two applications of the transformation, and one entry of the working matrix is altered via flip. If the entry is used in later stages of the algorithm, then the fault will fan out across the array;
not, only one element of L or U will be affected. We modified
the well-known algorithms of Press et al. [33] because of their
transparency, but similar results were obtained from other im-
plementations. For mult, we used the standard inner product or
“ijk” algorithm; for qr, inv, lu, and fft we used qrdcmp,
gaussj, ludcmp, and four1, all in double precision versions
and running on IEEE-754 compliant hardware.

For each random draw of algorithm inputs, our simula-
tion computes all four detection criteria (the left-hand sides of
eqns. 29–32). This detection criterion is the function that a
fault-detecting algorithm computes and then compares to a fixed
threshold τ to decide whether to declare a fault. In our simu-
lations, this yields two populations of detection criteria—under
fault-free and faulty conditions—for each combination of test
and algorithm. Each population contains N criterion values,
one for each random selection of input arguments.

5.2 Results: Matrix Operations

We begin to understand how the detection criterion affects er-
ror rates by examining one test in detail. The upper-left panel of
figure 1 shows probability densities of the logarithm (base 10) of
the $T1$ detection criterion for qr under fault-free (straight line)
and faulty (crosses) conditions. (In this panel only, the curves
overlap and must be shown with different zero levels; in all pan-
els the left scale is for the fault-free histogram while the right
scale is the faulty histogram.) The fault-free curve is gaussian
in shape, reflecting accumulated roundoff noise, but the faulty
curve has criterion values spread over a wide range due to the
diverse sizes of injected faults. A test attempts to separate these
two populations — for a given τ, both False Alarms (roundoff
errors tagged as data faults) and Detections (data faults correctly
identified) will be observed. The area under the fault-free prob-
ability density curve to the right of a threshold τ equals the
probability of false alarm, P_{fa}; area under the faulty curve above
τ is P_{d}, the chance of detecting a fault.

This panel also shows τ^* (dashed line), which is defined to be
the smallest tolerance resulting empirically in zero false alarms,
and $\tau_{ub} > \tau^*$ (dash-dot line), the “worst-case” theoretical error
bound of result 3. (We have conservatively used $\rho = 10$.) These
threshold lines are labeled as described above, but appear on the
log scale at the value $\log_{10}(\tau u)$. The point is that use of an
average-case threshold enables detection of all the events lying
between τ^* and τ_{ub}, while still avoiding false alarms.

Different test mechanisms deliver different histograms, and
the best tests result in more separated populations. The upper-
right panel shows the naive $T0$ test for qr. This test exhibits
considerable overlap between the populations. Due to incorrect
normalization, errors are spread out over a much greater range
overall (about 30 orders of magnitude) and the fault-free errors
are no longer a concentrated clump near $\log_{10}(\text{u}) \approx -15.7$. The
Characteristics of a test are concisely expressed using the standard receiver operating characteristic (ROC) curve. This is just a parametric plot of the pair (P_{fa}, P_d), varying τ to obtain a curve which illustrates the overall performance of the test — summarizing the essential characteristics of the interplay between densities seen in figure 1. Large τ corresponds to the corner where $P_{fa} = P_d = 0$; small τ yields $P_{fa} = P_d = 1$. Intermediate values give tests with various accuracy/coverage attributes. See figures 2 and 3. In these figures, T_0 is the line with square markers and T_3 is marked by upward pointing triangles; T_0 lies below T_3. T_2 is shown with left pointing triangles, and T_1, the optimal test, with asterisks; these two tests nearly coincide. We use $\lambda = 0.001$ in T_3.

Because N independent runs are used to estimate both P_{fa} and P_d, the standard error for either is $(P(1 - P)/N)^{1/2}$: the standard deviation of N averaged 0/1 variables [34, p. 107]. Thus, the standard error of an estimate \hat{P} of P_d, based on N runs, may be estimated as $(\hat{P}(1 - \hat{P})/N)^{1/2}$ [34, p. 131]. For figures 2 and 3 we used $N = 20000$ and curves have confidence

\begin{equation}
E_{rel} = |\text{flip}(x) - x|/x . \tag{35}
\end{equation}

Accordingly, a second set of density curves is shown in the lower panels of figure 1. There, faults which cause a perturbation of size less than $E_{rel} = 10^{-10}$ are screened from the fault-containing curve (the fault-free curve remains the same). Removing these minor faults moves experiments out of the far left of the fault-containing curve: in some cases, these are experiments where the roundoff error actually dominates the error due to the fault. Again, a substantial range of experiments still exists above τ^* but below τ_{ub}. As we shall see, these plots are typical of those observed for other algorithms.

Fig. 2. ROC for random matrices of bounded condition number, including all faults.
Average-case Matrices, Significant Faults

![ROC: Matrix Multiply, Excluding Faults < 1.0e-10](image1)

![ROC: Inverse, Excluding Faults < 1.0e-10](image2)

![ROC: SVD, Excluding Faults < 1.0e-10](image3)

![ROC: LU Decomposition, Excluding Faults < 1.0e-10](image4)

Fig. 3. ROC for random matrices of bounded condition number, excluding faults of relative size less than 10^{-10}.

As foreshadowed by q_T in figure 1, the ROCs of figure 2 show that some faults are so small they cannot be reliably identified after the fact. This is manifested by curves that slowly rise, not attaining $P_d = 1$ until $P_{fa} = 1$ as well. Therefore, we show a second group of ROCs (figure 3). In this set, faults which cause a perturbation less than $E_{\text{min}}^{\text{rel}} = 10^{-10}$, about 30% of all faults, are screened from the results entirely. This is well above the accuracy of single-precision floating point and is beyond the precision of data typically obtained by scientific experiment, for example. These ROCs are informative about final fault-detection performance in an operating regime where such a loss of precision in one number in the algorithm working state is acceptable.

We may make some general observations about the results. Clearly T_0, the un-normalized test, fares poorly in all experiments. Indeed, for ΔD, the correct normalization factor is large and T_0 could only detect some faults by setting an extremely low τ. This illustrates the value of the results on error propagation that form the basis for the normalized tests. Generally speaking,

$$T_0 \ll T_3 \approx T_2 \approx T_1$$

(36)

This confirms theory, in which T_1 is the ideal test and the others approximate it. In particular, T_1 and T_2 are quite similar because generally only an enormous fault can change the norm of a matrix — these cases are easy to detect. And the vector test T_3 suffers relative to the two matrix tests, losing about 3–10% in P_d, because the single vector norm is sometimes a bad approximation to the product of matrix and vector norms used in T_1 and T_2. However, we found that problem-specific tuning of λ allows the performance of T_3 to virtually duplicate that of the superior tests.

To further summarize the results, we note that the most relevant part of the ROC curve is when $P_{fa} \approx 0$; we may in fact be interested in the value P^*, defined to be P_d when $P_{fa} = 0$. This value is summarized for these experiments in table III, as the fault screen $E_{\text{rel}}^{\text{min}}$ is varied. (Table values for $E_{\text{rel}}^{\text{min}} = 0$ and
In worst-case — and no practical application should be in this
regime — coverage drops to about 60–90%. This gives an
indication of the loss in fault-detection performance incurred by a
numerically ill-posed application. Even in this case we see that
significant cancellation of errors occurs, and the \(\tau^* \) values do
not change much.

5.3 Results: Fourier Transform

In related simulations we examine the performance of tests
for the Fourier transform. In addition to the randomized weight
vector \(w_1 \) defined at the end of sec. 2, we also used a deterministic
vector \(w_2 \) with real and imaginary part both equal to

\[
\cos(4\pi(k - n/2)/n), \quad k = 0, 1, \ldots, n - 1.
\]

This is a half-period of a cosine and it exhibits no particular
symmetry in the Fourier transform. However, the ratio between
the largest and smallest elements of the transform of \(w_2 \) is larger
by a factor of ten than \(w_1 \). We also use the conservation of energy
(Parseval) postcondition

\[
y = \mathcal{F}(x) \implies \|y\|^2_2 = \sqrt{n} \|x\|_2
\]

to define a related test for \(\hat{y} = \mathcal{F}(x) \)

\[
(\|x\|_2 - n^{-1/2}\|\hat{y}\|_2)/\|x\|_2 \geq \tau^* u.
\]

This Parseval test has been normalized to reflect scaling of the
residual by the input’s magnitude.

The ROC curve in figure 4 summarizes performance of these
tests (\(N = 20000 \) samples implies standard errors better than
0.005). The naive \(T0 \) test has poor performance, as observed
earlier. The Parseval test and the \(w_2 \) checksum test have about
the same performance, but both are clearly bested by the \(w_1 \)
checksum test. This ranking is repeated in table V, which shows
\(P^* \) for various error screens. The \(w_1 \) checksum test is able to
detect all faults larger than \(10^{-11} \). The large gap between \(\tau^* \)
and the theoretical threshold setting \(\tau_{th} \) (from result 13) illustrates
again how much can be gained from an average-case outlook.

For \(\mathcal{F} \) the observed scaling of the error is known, both as a
function of input magnitude and input dimension, but the multi-
pllicative constant is not.

\[
\begin{array}{cccccc}
\hline
\text{row} & \text{column} & \text{cov} & \text{corr} & \text{corr} & \text{corr} \\
\hline
0 & 0.570 & 0.630 & 0.605 & 0.423 & 0.621 \\
10^{-14} & 0.622 & 0.703 & 0.606 & 0.476 & 0.702 \\
10^{-13} & 0.657 & 0.734 & 0.706 & 0.500 & 0.730 \\
10^{-12} & 0.695 & 0.771 & 0.749 & 0.527 & 0.779 \\
10^{-11} & 0.723 & 0.809 & 0.780 & 0.552 & 0.811 \\
10^{-10} & 0.748 & 0.839 & 0.789 & 0.576 & 0.828 \\
10^{-9} & 0.754 & 0.852 & 0.800 & 0.600 & 0.842 \\
10^{-8} & 0.767 & 0.879 & 0.820 & 0.629 & 0.853 \\
\tau^* & 10.41 & 47.2 & 18.0 & 5.04 & 24.2 \\
\hline
\end{array}
\]
6 Conclusions and Future Work

Faults within certain common computations — computations which in some cases dominate application run time — can be detected by exploiting properties their outputs must satisfy. Once detected at the subroutine level, the subroutine can be retried, or an exception raised to be caught by a higher level of the fault-tolerance system software. Following earlier work, we define tests for eight Fourier and linear-algebraic floating-point operations by checking that the computed quantities satisfy a necessary condition, implied by the form of the operation, to within a certain tolerance. Theoretical results bounding the expected roundoff error in a given computation provide tests which generally work by comparing the norm of a checksum-difference vector, scaled according to algorithm inputs, to a threshold.

For each operation, a family of readily computable tests is easy to define and implement (see table II and eqns. 29–32). The tests have different time/performance tradeoffs. The key question for a fault tolerance practitioner is to set the threshold to achieve the right tradeoff between correct fault detections and false alarms. Because of the imprecision inherent in the error bounds, theoretical results can only give an indication of how expected error scales with algorithm inputs; the precise constants for best performance must in general be determined empirically for a given algorithm implementation.

In our simulation tests, the observed behavior of these tests is in good agreement with theory. All the linear-algebraic operations tested here (\texttt{mult}, \texttt{qr}, \texttt{svd}, \texttt{lu}, and \texttt{inv}) admit tests that are effective in detecting faults larger than 10^{-10} at well above the 99% level on a broad range of matrix inputs. For factorizations, the easy-to-compute \texttt{T3} (vector-norm) test gives performance within 1–3% of the more complex tests. The naive un-normalized test fares poorly in all tests. For \texttt{fft}, a checksum test with randomly chosen weights also performs very well, detecting all faults larger than 10^{-11} and clearly outperforming the Parseval-based test. Finally, the simulation results illustrate that conventional error bounds, if followed uncritically, can result in tolerances too high by several orders of magnitude for typical matrix inputs. More faults can be detected by using realistic thresholds.

Because the tests may be implemented as wrappers around the overall computation, they may be used with little modification in any high-performance package. For example, our implementation consisted of a set of wrappers around various \texttt{ScaLAPACK} and \texttt{FFTW} subroutines. Our choice of checksum tests was based on computational cost; for most operations we were able to perform the ideal test, but in some cases (such as \texttt{mult}) we employed an approximate test. We tested our implementation both by comparing the results with those generated by Matlab computations and, in the case of \texttt{fft}, by use of simulated fault injection at the granularity of machine instructions. In these tests we observed general agreement with theory. For details of these results, see [35].

As a final note we observe that other common subroutines, such as those involving sorting, order statistics, and numerical integration, also require more than $O(n)$ time and are candidates for fault-detecting versions. Additionally, a multiple-checksum fault-detection scheme would help to raise coverage if this is deemed necessary for some applications.

Acknowledgments

This work was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Thanks are due to the anonymous referees, whose comments helped the presentation and clarity of the paper. The authors also thank John Beahan, Rafi Some, Roger Lee, and Paul Springer of JPL for suggesting and commenting on parts of this work.

References

Michael Turmon is a principal member of the technical staff at the Jet Propulsion Laboratory, California Institute of Technology. His research is in the theory of generalization in neural networks, applications of model-based and nonparametric statistics to image understanding, software fault tolerance, and solar physics. He received Bachelor’s degrees in Computer Science and in Electrical Engineering, and subsequently an M.S. in Electrical Engineering, from Washington University, St. Louis. He obtained his Ph.D in Electrical Engineering from Cornell University in 1995. Michael was a National Science Foundation Graduate Fellow (1987–90), won the NASA Exceptional Achievement Medal for his work on pattern recognition in solar imagery (1999), and received a Presidential Early Career Award for Scientists and Engineers (PECASE) in 2000. He has been co-investigator on the NASA/ESA SOHO spacecraft, and is co-investigator on the CNES Picard mission. Michael is a member of the IEEE (Computer and Information Theory Societies) and the Institute for Mathematical Statistics.

Robert Granat is a Senior Member of the Technical Staff in the Data Understanding Systems Group at the Jet Propulsion Laboratory. He received his B.S. in Engineering and Applied Science from the California Institute of Technology, and his M.S. in Electrical Engineering from the University of California, Los Angeles in 1998. Robert’s areas of research are large scale scientific computing, software fault tolerance, statistical pattern recognition, and tomographic imaging. He is a member of the IEEE.

Daniel S. Katz is supervisor of the Parallel Applications Technologies Group within the Exploration Systems Autonomy section at the Jet Propulsion Laboratory, which he joined in 1996. He was the Applications Project Element Manager for the Remote Exploration and Experimentation Project while this work was performed. From 1993 to 1996 he was employed by Cray Research (and later by Silicon Graphics) as a Computational Scientist on-site at JPL and Caltech. His research interests include: numerical methods, algorithms, and programming applied to supercomputing, parallel computing, and cluster computing; fault-tolerant computing; and computational methods in both electromagnetic wave propagation and geophysics. He received his B.S., M.S., and Ph.D degrees in Electrical Engineering from Northwestern University, Evanston, Illinois, in 1988, 1990, and 1994, respectively. His work is documented in numerous book chapters, journal and conference publications, and NASA Tech Briefs. He is a senior member of the IEEE, designed and maintained (until 2001) the original website for the IEEE Antenna and Propagation Society, and serves on the IEEE Task Force on Cluster Computing’s Advisory Committee.

John Z. Lou received his B.S. in applied mathematics and M.S. in engineering mechanics from Shanghai Jiao-Tong University in 1982 and 1985, respectively. He received his Ph.D in computational mathematics from the University of California at Berkeley in 1991. During 1991–1993, he worked as a staff scientist at the Naval Command, Control and Ocean Surveillance Center in San Diego, California. He is now a senior staff member at the Jet Propulsion Laboratory, California Institute of Technology. His research interests include numerical modeling of space and earth science applications, advanced computing and software technologies. His work includes the development of algorithms and software in those areas.