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Abstract—We describe and test a software approach to fault detection in common numerical algorithms. Such result checking or
algorithm-based fault tolerance (ABFT) methods may be used, for example, to overcome single-event upsets in computational
hardware or to detect errors in complex, high-efficiency implementations of the algorithms. Following earlier work, we use checksum
methods to validate results returned by a numerical subroutine operating subject to unpredictable errors in data. We consider
common matrix and Fourier algorithms which return results satisfying a necessary condition having a linear form; the checksum tests
compliance with this condition. We discuss the theory and practice of setting numerical tolerances to separate errors caused by a
fault from those inherent in finite-precision floating-point calculations. We concentrate on comprehensively defining and evaluating
tests having various accuracy/computational burden tradeoffs, and we emphasize average-case algorithm behavior rather than using

worst-case upper bounds on error.

Index Terms—Algorithm-based fault tolerance, result checking, error analysis, aerospace, parallel numerical algorithms.

1 Introduction

HE work in this paper is motived by a specific problem —

detecting radiation-induced errors in spaceborne commer-
cia computing hardware — but the results are broadly applica-
ble. Our approachis useful whenever the output of a numerical
subroutine is suspect, whether the source of errors is external
or internal to the design or implementation of the routine. The
increasing sophistication of computing hardware and software
makes error detection an important issue. On the hardware side,
growing design complexity has made subtle bugs or inaccuracies
difficult to detect [1]. Simultaneously, continuing reductionsin
microprocessor feature size will make hardware more vulnera-
ble to environmentally-induced upsets[2]. On the software side
there are similar issues which come from steadily increasing de-
signcomplexity [3], [4]. Therearea so new challengesresulting
from decomposition and timing issues in parallel code and the
advent of high-performance agorithms whose execution paths
are determined adaptively at runtime (e.g., ‘codelets’ [5]).

To substantiate this picture, consider NASA’'s Remote Explo-
ration and Experimentation (REE) project [6]. The project aims
to enable a new type of scientific investigation by moving com-
mercial supercomputing technology into space. Transferring
such computational power to space would enable highly au-
tonomousmissionswith substantial on-board analysiscapahility,
mitigating the control latency that is due to fundamental light-
timedelays, aswell asbandwidth limitationsin thelink between
spacecraft and ground stations. To do this, REE does not desire
to develop a single computational platform, but rather to define
and demonstrate a process for rapidly transferring commercial
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high-performance hardware and software into fault-tolerant ar-
chitectures for space.

Traditionally, spacecraft components have been radiation-
hardened to protect against single event upsets (SEUS) caused
by galactic cosmic rays and energetic protons. Hardening low-
ers clock speed and may increase power requirements. Even
worse, the time needed to radiation-harden a component guar-
antees both that it will be outdated when it is ready for use in
space, and that it will have ahigh cost which must be spread over
a small number of customers. Use of commodity off-the-shelf
(COTYS) components in space, on the other hand, implies that
faults must be handled in software.

The presence of SEUs requires that applications be self-
checking, or tolerant of errors, asthefirst layer of fault-tolerance.
Additional software layers can protect against errorsthat are not
caught by the application [7]. For example, one such layer au-
tomatically restarts programswhich have crashed or hung. This
works in conjunction with self-checking routines: if an error is
detected, and the computation doesnot yield correct results upon
retry, an exception is raised and the program may be restarted.
Since the goa of the project is to take full advantage of the
computing power of the hardware, simple processreplicationis
undesirable.

In this paper, we focus on detecting SEUs in the application
layer. An SEU affecting application data is particularly trou-
blesome because it would typically have fewer obvious conse-
guencesthan an SEU to code, which would be expected to cause
an exception. (Memory will be error-detecting and correcting,
so faults to memory will be largely screened: most data faults
will therefore affect the microprocessor or its cache.) Fortu-
nately, due to the locality of scientific codes, much of their time
is spent in certain common numerical subroutines. For example,
about 70% of the processing in one of the REE science appli-
cations, a Next Generation Space Telescope [8] phase retrieval
agorithm[9], isspentinfast Fourier transforms. Thischaracter-
istic of the applications motivates our emphasis on correctness
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testing of individual numerical subroutines.

Following the COTS philosophy laid out above, our gen-
eral approach has been to wrap existing parallel numerical li-
braries (ScaLAPACK [10], PLAPACK [11], FFTW [5]) with
fault-detecting middleware. This avoids altering the internals
of these highly tuned parallel algorithms. We can treat subrou-
tinesthat return results satisfying anecessary condition having a
linear form; the checksum tests compliance with this necessary
condition. Here we discuss the theory and practice of defining
tests and setting numerical tolerances to separate errors caused
by afault from those inherent in floating-point calculations.

To separate these two classes of errors, we are guided by well-
known upper bounds on error propagation within numerical al-
gorithms. These bounds provide amaximum error that can arise
due to register effects — even though the bounds overestimate
the true error, they do show how errors scale depending on algo-
rithminputs. Adapting these boundsto thefault tolerant software
setting yields a series of tests having different efficiency and ac-
curacy attributes. To better understand the characteristics of the
tests we devel op, we perform controlled numerical experiments.

The main contributions of this paper are:

« Comprehensive development of input-independent tests
discriminating floating-point roundoff error from fault oc-
currence.

« Within this context, emphasis on average-case error esti-
mates, rather than upper bounds, to set the fault threshold.
This can result in orders of magnitude more room to detect
faults, see section 5.

« Validation of thetests by explicitly using standard decision-
theoretic tools: the probabilities of false alarm and detec-
tion, and their parametric plot viaareceiver operating char-
acteristic (ROC) curve.

The sections of this paper continue as follows: we introduce
our notation and set out some general considerations that are
common to the routines we study. After that, we examine how
roundoff errors propagate through numerical routines and de-
vel op fault-detection tests based on expected error propagation.
Next, we discuss the implementation of our tests and explore
their absolute and relative effectiveness via simulation experi-
ments. We close by offering conclusionsand discussing possible
future research.

1.1 Notation

Matrices and vectors are written in uppercase and lowercase
roman letters respectively; AT is the transpose of the matrix A
(conjugate transpose for complex matrices). Any identity ma-
trix is aways | ; context provides its dimension. A real (resp.
complex) matrix A is orthogonal (resp. unitary) if AAT = 1.
A square matrix is a permutation if it can be obtained by re-
ordering therows of |. The size of avector v is measured by its
p-norm ||v|| p, of which the three most useful cases are

. . 12\1/2
V|1 = vil, (v =max|vi|, |lv :( v ) .
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The simplest norm on matrices is the Frobenius norm

IAlE = (Y 1ai )72
N

Other matrix norms may be generated using the vector p-norms,
and they are computed as

1Al = miaXXj:'a”' - Al = mjaxiZ|au|

IAll2 = omax (A)

The last is the largest singular value of A and is not trivia to
find. All other vector and matrix norms are computed in time
linear in the number of matrix elements. All the norms differ
only by factors depending only on matrix size and may be re-
garded as equivalent; in this context write the unadorned ||-||.
The submultiplicative property holds for each of these norms:
[Avll < [[Alllv]l and [|AB] < [[AlllIBII. See[12, §2.2, 2.3]
or [13, 86.2] for more on all these properties. The numerical
precision of the underlying hardware is captured by u, the dif-
ference between unity and the next larger floating-point number
(u = 2.2x 10716 for 64-bit |EEE floating point).

2 General Considerations

We are concerned with these linear operations:

« Product: find the product AB = P, given A and B.

« QR decomposition: factor a square A as A = QR, where
Q isan orthogonal matrix and R is upper triangular.

« Singular value decomposition: factor a square A as A =
UDVT, where D isdiagonal and U, V are orthogonal ma-
trices.

« LU decomposition:; factor Aas A= PLU with P apermu-
tation, L unit lower-triangular, U upper-triangular.

« System solution: solvefor x in Ax = b when given A and
b.

« Matrix inverse: given A, find B such that AB = 1.

« Fouriertransform: givenx, find y suchthat y = Wx, where
W is the matrix of Fourier bases.

« Inverse Fourier transform: given vy, find x such that x =
n~1WTy where W is the n x n matrix of Fourier bases.

We note that because standard implementations of multidimen-
sional Fourier transform use one-dimensional transform asasub-
routine, amultidimensional transformwill inherit afiner-grained
robustness by using afault-tol erant one-dimensional subroutine.
In this case, fault tolerance need only be implemented at the
base level of the computation. Alternatively, one could use ap-
propriate postconditions at the top level. (E.g., the algorithm
fft2, given an input matrix X, produces a transform Y such
that Y = WXW.)

Table | summarizes the operations and the inputs and outputs
of theal gorithmswhich computethem. Each of these operations
has been written to emphasize that some relation holds among
the subroutine inputs and its computed outputs; we call thisthe
postcondition. The postcondition for each operationis givenin
table I. In several cases, indicated in the table, this postcon-
dition is a necessary and sufficient condition (NASC), and thus
completely characterizesthe subroutine’stask. (To seethis, con-
sider for example inv: if itsoutput B issuchthat AB = I, then
B = A1) For the other operations, the postconditionisonly a
necessary condition and valid results must enjoy other proper-
tiesaswell — typically astructural constraint like orthogonality.
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TABLE |
Operations and Postconditions
Name Signature Postcondition NASC? Extra conditions if no
Product P=mult(A,B) AB=2P Y
QR decomposition (Q,R)=gr(A) A=0OR N ¢ orthogonal
R upper triangular
Singular value (U,D,V)=svd(A) A= UDveT N D diagonal
decomposition U, V orthogonal
LU decomposition (P,L,U)=1u(A) A=PLU N P a permutation
L unit lower-triangular
U7 upper-triangular
System solution x =solve(A,b) Ax =b Y
Matrix inverse B=1inv(A) AB=1 Y
Fourier transform y=fft(x) y=Wx Y
Inverse Fourier transform x=1fft(y) y=n1wTy Y
The additional propertiesneeded in thiscase aregivenintheta-  most errors:
ble but we do not check them as part of the fault test. (In the ”
caseof 1u, itiscustomary to store L and U in opposite halvesof Lil2---Lpw = RiRp--- Rqw )

the same physical matrix, so their structural properties are auto-
matically established.) In either case, identifying and checking
the postcondition provides a powerful way to verify the proper
functioning of the subroutine.

Before proceeding to examine these operations in detail, we
mention two general pointsinvolvedin designing postcondition-
based fault detection schemesfor other algorithms. Supposefor
definitenessthat we planto check onem x n matrix. Any reason-
able detection schememust depend on the content of each matrix
entry, otherwise someentrieswould not bechecked. Thisimplies
that simply performing a check (e.g., computing a checksum of
an input or output) requires O(mn) operations. Postcondition-
based fault detection schemes thus lose their attractiveness for
operations taking O(mn) or fewer operations (e.g. trace, sum,
and 1-norm) because it is simpler and more directly informa-
tive to achieve fault-tolerance by repeating the computation.
(Thisis an illustration of the “little-oh rule” of [14].) The sec-
ond general point is that, although the postconditions above are
linearly-checkable equalities, they need not be. For example,
lAll2 = omax(A) is bounded by functions of the 1-norm and
the oco-norm, both of which are easily computed but not of linear
form. Onecouldtest acomputation’sresult by checking postcon-
ditions that involve nonlinear functions of the inputs, expressed
either as equalitiesor asinequalities. None of the operationswe
consider requiresthislevel of generality.

Indeed, the postconditionsconsidered in thispaper generically
involve comparing two linear maps, which areknownin factored
form

2
Lily-LpZ RiRo---Ry . 1)

This check can be done exhaustively vian linearly independent
probesfor an n x n system — which would typically introduce
about as much computation as recomputing the answer from
scratch. On the other hand, atypical fault to datafans out across
the matrix outputs, and a single probe would be enough to catch

for some probe vector w.

For certain operations (solve, inv) such postcondition
checks are formalizations of common practice. Freivalds [15]
used randomized probes w to check multiplication. This ap-
proach, known as result-checking (RC), isanalyzed in ageneral
context by Blum and Kannan [16]; for further analysis see [1],
[14], [17]. Use of multiple random probes can provide proba-
bilistic performanceguaranteesalmost as good as the exhaustive
scheme indicated in egn. 1, without performing all n probes.

Linear checks on matrix operations are also the basis for
the checksum-augmentati on approach introduced by Huang and
Abraham [18] for systolic arrays, under the name algorithm-
based fault tolerance (ABFT). The idea has since both moved
outside its original context of systolic array computation, and
has aso been extended to LU decomposition [19], QR and re-
lated decompositions[20], [21], SVD, FFT [22], [23], and other
algorithms. The effects of multiple faults, and faults which oc-
cur during the test itself, have been explored through experi-
ment [24]. Fault location and correction, and use of multiple
probe vectors have also been studied in the ABFT context [25],
[26].

An earlier paper [20] uses roundoff error bounds to set the
detection threshold for one algorithm, the QZ decomposition.
Other work ([27], [28]) uses running error analysis to derive
methods for maintaining roundoff error bounds for three algo-
rithms. Running error analysis is a powerful technique [13,
§3.3] with the potential to give accurate bounds, but requires
modifying the internals of the agorithm: we have preferred
to wrap existing agorithms without modification. As we shall
see, norm-based bounds provide excellent error-detection per-
formance which reduces the need for running error analysisin
many applications. Error bounds have also been used to derive
input-independent tests for system solution [29]; the paper clev-
erly builds in one round of iterative refinement both to enable
usable error bounds, and also to allow correction of errors in
the first computed solution. In contrast to the above papers, our



4 ACCEPTED FOR PUBLICATION: IEEE TRANSACTIONS ON COMPUTERS, (IN PRESS)

work emphasi zes average-case bounds and attemptsto providea
comprehensive treatment of error detection for many operators.

There are two designer-sel ectabl e choices controlling the nu-
merical propertiesof thefault detection systemin (2): thecheck-

. . . . ?
sum weights w and the comparison method indicated by =.
When no assumptions may be made about the factors of (2), the
first is relatively straightforward: the elements of w should not
vary greatly inmagnitude sothat resultsfigureessentially equally
in the check. At the minimum, w must be everywhere nonzero;
better till, each partial product Ly --- Lpw and Ry --- Lqw
of (2) should not vary greatly in magnitude.

For Fourier transforms, this yields a weak condition on w: it
should at least be chosen so that neither the real or imaginary
parts of w, nor those of its Fourier transform, vary radically in
magnitude. Thisrulesout many simplefunctions(likethe vector
of all ones) which exhibit symmetry and have sparsetransforms.
For FFT checksum tests, we generated a fixed test vector of
randomly chosen complex entries: independent and identically
distributed unit normal variatesfor both real andimaginary parts.
The ratios between the magnitude of the largest and smallest
elements of this w and its transform are about 200. We see in
sec. 5.3 that this choice is far superior to the vector of all ones
and other elementary choices. For the matrix operations, on the
other hand, little can be said in advance about the factors (but
see[30]). We are content to let w be the vector of all ones. Our
implementation alows an arbitrary w to be supplied by those
users with more knowledge of expected factors.

3 Error Propagation

After the checksum vector, the second choice is the compar-
ison method. As stated above, we perform comparisons using
the corresponding postcondition for each operation. To develop
atest that isroughly independent of the matrices at hand, we use
thewell-known boundson error propagationin linear operations.
Inwhat follows, we devel op atest for each operation of interest.
For each operation, we first cite aresult bounding the numerical
error in the computation’s output, and then we use this bound to
develop acorollary defining atest which isroughly independent
of the operands. Those less interested in this machinery might
review the first two results and skip to section 4.

It is important to understand that the error bounds given in
the results are rigorous, but we use them qualitatively to deter-
mine the general characteristics of roundoff in an algorithm's
implementation. The upper boundswe cite are based on various
worst-case assumptions (see below) and they typically predict
roundoff error muchlarger than practically observed. Inthefault
tolerance context, using these bounds uncritically would mean
setting thresholds too high and missing some fault-induced er-
rors. Their value for us, and it is substantial, is to indicate how
roundoff error scales with different inputs. (See [12, §2.4.6],
[29], and section 5 for more on this outlook.) This allows fault
tolerant routines to factor out the inputs, yielding performance
that ismorenearly input-independent. Of course, someproblem-
specific tuning will likely improve performance. Our goal isto
simplify the tuning as much as possible.

The dependence of error bounds on input dimension, as op-
posed to input values, is subtler. Thisis determined by the way

individual roundoff errors accumulate within a running algo-
rithm. Several sources of estimation error exist:

« Roundoff errorsaccumulate linearly in worst case, but can-
cel in average case [13, §2.6], [31, §14].

« Error analysis methods often have inaccuracies or artifacts
at thislevel of detail (e.g., [13, note to thm. 18.9]). In par-
ticular, the constants will vary depending on which matrix
norm s used.

« Carefully implemented al gorithms decompose summations
so that roundoff errors accumulate slowly [13, §3.1].

« Some hardware uses extended precision to store intermedi-
ateresults[13, §83.1].

For these reasons, numerical analysts generally place little em-
phasis on leading constants that are a function of dimension.
One heuristic is to replace the dimension-dependent constants
in the error bound by their square root [13, §2.6], based on a
central limit theorem argument applied to the sum of individual
roundoff errors. (Theheuristicisjustified ontheoretical grounds
when a randomized detection algorithm [14, alg.2.1.1] is used
under certain conditions.) Because of these uncertainties, we
givetestsinvolving dimensional constants only when the bound
is known to reflect typical behavior.

Result 1 ([12],§2.4.8) Let P = mult(A, B) becomputedus-

ing adot-product, outer-product, or gaxpy-based algorithm. The
error matrix E = P — AB satisfies

[Elloo = NI Allo I Blloou ©)

where n is the dimension shared by A and B.
Corollary 2: An input-independent checksum test for mult
is
d=Pw— ABw (4)
I dlloo/ (I Alloo I Blloolwlloo) = TU ®)

where 7 is an input-independent threshold.
Thetest isexpressed asacomparison (indicated by the = relation)
with athreshold; thelatter isascaled version of thefloating-point
accuracy. If the discrepancy is larger than zu, afault would be
declared, otherwise the error is explainable by roundoff.

Proof: Thedifferenced = Ew so, by the submultiplicative
property of norms and result 1,

[dllso < IEllocllwlloo = NIl Alloc I Blloollwllocu

and the dependenceon A and B isremoved by dividing by their
norms. The factor of n is unimportant in this context, as noted
in the remark beginning the section. ]

Result 3 ([13],thms.18.4,18.9) Let (Q, R) = qr(A) be com-
puted using a Givens or Householder QR decomposition algo-
rithm applied to themxn matrix A, m > n. The backward error
matrix E defined by A+ E = QR satisfies

IEllr < pm?n||Allpu (6)

where p isasmall constant for any matrix A.
Corollary 4: An input-independent checksum test for gqr is

d=QRw — Aw 7
Idlle /(A wlF) = Tu 8
where 7 is an input-independent threshold.
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Proof: Letd = QRw — Aw; then d = Ew where E is
the error matrix bounded in result 3. We claim that an input-
independent checksum test for gr is

Idlie/(AlE lwllg) = Tu
Indeed, by the submultiplicative property and result 3,

9)

2
IdliF < IEllFllwliF < pm*n||Allf lwllFu

and the dependence on A is removed by dividing by its norm.
The constant o is independent of A, the dimensional constants
are discarded, and the claim follows. ]
To convert this test, which uses Frobenius norm, into one using
the co-norm, recall that these two norms differ only by constant
factors which may be absorbed into 7.

Result 5([12],85.5.8) Let (U, D, V) = svd(A) be com-
puted using a standard singular value decomposition algorithm.

Theforward error matrix E definedby A+ E = U DV satisfies
IEll2 < pllAll2u (10)

where p isasmall constant for any matrix A.
Corollary 6: Aninput-independent checksumtest for svd as
applied to any matrix is

d=UDV w— Aw
[dlloo/ (I Allsollwllso) = TU

where t is an input-independent threshold.

Proof: Letd=UDVTw— Aw; thend = Ew where E is
the error matrix bounded in result 5. We claim that an input-
independent checksum test for svd is

ldll2/ (| All2llw]l2) = Tu
Indeed, by the submultiplicative property and result 5,

11
(12)

(13)

Idllz < IEll2llwli2 < p I All2]wll2u

and thedependenceon Aisremoved by dividing by itsnorm. The
constant p is neglected, and the claim follows. Thistest, which
uses 2-norm, may be converted into one using the co-norm as

with gr. |
Thetest for SVD has the same normalization as for QR decom-
position.

For some of the remaining operations, we require the notion
of a numerically realistic matrix. The reliance of numerical
analysts on some algorithms is based on the rarity of certain
pathol ogical matricesthat cause, for example, pivot elementsin
decomposition algorithmsto grow exponentially. Note that ma-
trices of unfavorable condition number are not less likely to be
numericaly realistic. (Explaining the pervasiveness of numeri-
cally realistic matricesis “one of the major unsolved problems
innumerical analysis’ [13, p.180] and we do not attempt to sum-
marize research characterizing this class.) In fact, even stable
and reliable algorithms can be made to misbehave when given
such unlikely inputs. Because the underlying routines will fail
under such pathological conditions, we may neglect themin de-
signing an fault tolerant system: such acomputationisliable to
fail even without faults. Accordingly, certain results bel ow must
assume that the inputs are numerically realistic to obtain usable
error bounds.

Result 7 ([12],§3.4.6) Let (P, L[,U) = 1u(A) be computed
using a standard LU decomposition algorithm with partial piv-
oting. The backward error matrix E definedby A+ E = PLU
satisfies

IElloo < 8n°p | AllocU

(14)

where the growth factor p depends on the size of certain partial
results of the calculation.
Trefethen and Bau [31, §22] describe typical behavior of p in
some detail, finding that it is typically of order ,/n for numeri-
cally realistic matrices. We note in passing that thisis close to
the best possible bound for the discrepancy, because the error
in simply writing down the matrix A must be of order || Aju.
The success of numerical linear algebrais in finding a way to
factor realistic matrices A while incurring only a small penalty
o beyond this lower bound.

Corollary 8: An input-independent checksum test for 1u as
applied to numerically realistic matricesis

d=PLUw— Aw
dlloo/ (I Alloolwlloo) = TU

(15)
(16)

where t is an input-independent threshol d.
Proof: We haved = Ew s0, by the submultiplicative prop-
erty of normsand result 7,

Idllco < 1Ellcollwlloo <8130 [[AllcollwlleoU

As before, the factor of 8n3 is unimportant in this calculation.
For numericaly realistic matrices, the growth factor p is aso
negligible, and the indicated test is recovered by dividing by the
norm of A. |

Result 9 ([12],83.4.6) Let X = solve(A, b) be computed
using astandard LU decomposition algorithmwith partial pivot-
ing, and back-substitution. Thebackward error matrix E defined
by (A+ E)X = b satisfies

IElloo < 8n°p || AllsoU

(17)

with p asinresult 7.
In this case, the result isitself avector: this vector is evaluated
directly within the postcondition Ax = b, omitting a checksum
operation.

Corollary 10: An input-independent test for solve as ap-
plied to numerically realistic matricesis

d=AX-b
Idlloo/ (I AllooIXllo0) = TU

(18)
(19)

where t is an input-independent threshol d.
Proof: We have d = —EX s0, by the submultiplicative
property of normsand result 9,

1dlloo < 1Ellooll&llco < 8n%0 | Allog [RloU

As before, leading factors are dropped and the indicated test is
recovered by dividing. |
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Thereare several waysto computean inversematrix, typically
based on an initia factorization A = PLU. The LINPACK
xGEDI, LAPACK xGETRI, and Matlab inv al use the same
variant which next computesU ~1 and then solves BPL = U 1
for B.

Result 11 ([13],§13.3.2) Let B = inv(A) be computed as
just described. Then the left residual satisfies

IBA—1]loo <8030 [Bllooll AllsoU (20)

with p asinresult 7.
Proof: The cited proof derives the elementwise bound

IBA—1|<2n|B|IL||U|u

where |M| is the matrix of absolute values of the entries of M,

and the inequality holds elementwise. Just as for 1u, one can

boundlijj < landuij < p|lAlls, Whichallowsconversionof the

elementwise bound into the norm bound at the end of §13.3.2.

|

Corollary 12; An input-independent checksum test for inv
as applied to numerically realistic matricesis

d=BAw—w (21)
1dlloo/ (Il Allso [ Bllso [ wlloe) = TU (22)
where t is an input-independent threshold.
Proof: Using the submultiplicative property,
Idllco = IBA—=Dwlloo < [BA=1]lco llwlloo
and the test follows on substituting result 11. |

We remark that this bound on discrepancy, larger than that for
1u, is the reason matrix inverse is numerically unstable. The
factor || Al|||A~1|| isthe condition number « (A).

We close this section with tests for Fourier transform oper-
ations. The n x n forward transform matrix W contains the
Fourier basis functions; recall that W/ /n is unitary. Following
convention, here the forward transform multiplies by W, while
the inverse preserves scale by using n W',

Result 13: Let § = £ ft(x) becomputed using adecimation-
based fast Fourier transform algorithm; let y = Wx be the
infinite-precision Fourier transform. The error vectore=y —y
satisfies

lell2 < 5nlog, n|x||2u (23)
Proof: See [13], thm. 23.2, remembering that |y|l2 =
VliXl2. u
Corollary 14: An input-independent checksum test for £ft

is

d=g—-wWx)Tw (24)

|d|/(nlogyn [IX]l2llwll2) = zu (25

where t is an input-independent threshold.

Proof:  This follows from result 13 after neglecting the
leading constant. |
In this case we include the dependence on matrix size because
it is known to be accurate [13, p. 468]. Using a similar result,
we may also obtain boundsfor 1 £ft.

Corollary 15: Aninput-independent checksumtest for i £ ft
is

d=R-—n"WTy)Tw (26)

|d|/dogynlyl2lwli2) = zu @7

where t is an input-independent threshol d.
Notethat scalingby n—1in i f £t removesafactor of n fromthe
test’'s normalization relativeto £ft.

4 Implementing the Tests

It is straightforward to transform these resultsinto algorithms
for error detection via checksums. The principal issue is com-
puting the desired norms efficiently from inputs to, or results
of, the desired calculation. For example, in the matrix multiply,
instead of computing || Al|||B|, it is more efficient to compute
[IP|| which equals || AB|| under fault-free conditions. By the
submulltiplicative property of norms, ||AB|| < || A|l|IB]|, so this
substitution always underestimates the upper bound on roundoff
error, leading to false darms. On the other hand, we must re-
member that the norm bounds are only general guides anyway.
All that is needed is for || AB|| to scale as does || Al|||B]|; the
unknown scale factor can be absorbed into t.

Taking this one step farther, we might compute || Pw|| as a
substitute for || A||||B][|[w]. In fact, Pw would often be com-
puted anyway as ameans of checking theintegrity of P later, so
the result check would come at only O(n) additional cost. On
the other hand, the simple vector norm runs an even greater risk
of underestimating the bound, especidly if w is nearly orthog-
onal to the product, so it iswise to use instead A||w]|| + || Puwl
for some problem-dependent A > 0. Extending this reasoning
to the other operations yields the comparisonsin table 1.

The tests al proceed from the indicated difference matrix A
by computing the norm

s=lAw| . (28)

scaling it by a certain factor o, and comparing to a threshold.
The matrix A is of course never explicitly computed because it
is more efficient to multiply w into the factors comprising A.
The naivetest is the un-normalized (o = 1) comparison

TO: §/|lw| Zzu (29)
The other tests have input-sensitive normalization as summa-

rizedintablell. First, theideal test

T1: §/(orflw|) Zzu (30)

is the one recommended by the theoretical error bounds of sec-
tion 3, but may not be computableusing thevalueson hand (e.g.,
for inv).

The other two tests are based on quantities computed by the
algorithm and may also be suggested by the reasoning above.
First, the matrix test

T2: §/(o2|w|) = Tu (31)

involves a matrix norm (except for solve, £ft and i££t) of
computed algorithm outputs. When morethan onevariant of the
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TABLE Il
Algorithms and Corresponding Checksum Tests

Algorithm A o1 09 o3 Note

mult P—AB lAlBII 12| 1Pw|  —
qr OR— A A ICRI lAw| o1 easier than o7
svd UDVT — A Al 1TDVT |Aw]| o1 easier than oy
1u PLU— A A IPLU| |Aw| o easier than o7
solve (AZ —8)T lAT ] NANIZN — result is a vector
inv I—-BA IANIATY 1ANIBI  IBIIAwl  [BAw]| useless
fft (y — wx)T nlogs(n) x| — — result is a vector
ifft G —n1 WTy)T logs () || ¥ || — — result is a vector

matrix test is available, we have chosen a reasonable one. The
vector test

T3: §/(A|lw|| +03) = tu (32)

involves a vector norm and is therefore more subject to false
alarms. A major advantage of T 3 (seethe oz columnintablell)
is that for the factorizations, it needs only || Aw| whichis very
simple to computein the typical case when algorithm inputsare
already checksummed. We note that the obvious vector test for
inv uses |[BAw]||, but since B = inv(A), this test becomes
almost equivalent to T 0: we suggest using the vector/matrix test
shown intablell. Theideal tests T 1 for the Fourier transforms
need only the norm of the input, which is readily calculated, so
other test versions are omitted.

Clearly the choice of whichtest to useisbased ontheinterplay
of computation time and fault-detection performancefor agiven
population of input matrices. Because of the shortcomings of
numerical analysis, we cannot predict that one test will signifi-
cantly outperform another. The experimental results reportedin
the next section are oneindicator of real performance, and may
motivate more detailed analysis of test behavior.

5 Results Under Simulated Faults

We describethe simul ation setup, present resultsfor the matrix
operations (mult, lu, svd, gr, and inv) under two input-
matrix distributions, and finally show results for the Fourier
transform using various probe vectors w. These simulations
are intended to test the essential effectiveness of the proposed
checksum technique for fault tolerance, as well asto sketch the
relative behaviorsof thetestsdescribed above. Duetothespecia
nature of the populations of test matrices, and the shortcomings
of the fault insertion scheme, these results should be taken as a
good estimate of relative performance, and a rough estimate of
ultimate absol ute performance.

5.1 Experimental Setup

I n essence apopul ation of randommatricesisused asinputtoa
given computation; faultsareinjectedin half thesecomputations,

and a checksum test is used afterward to attempt to identify the
faulty computations. For the matrix operations, random test
matrices A of a given condition number « are generated by the
rule

A=10"UD, V' (33)

Therandom matricesU and V are the orthogonal factorsin the
QR factorization of two square matrices with entries that are
independent unit normal random variables. (They are therefore
random orthogonal matrices from the Haar distribution [32].)
The diagonal matrix D, is filled in by choosing independent
uniformly distributed random singular val ues, rescal ed such that
the largest singular value is one and the smallest is 1/«x. These
matrices all have 2-norm equal to unity; the overall scale is set
by o which is chosen uniformly at random between -8 and +8.
A total of 2N, 64 x 64 matrices is generated by independent
draws from the rule (33). Equal numbers of matrices for each «
in {21, ..., 2%} are generated over the course of the 2N draws.
Vector inputsfor £ £t have no concept of condition number and
they are generated by

v =10% (U1 + ~/—1uy)

Here, « is as above, and u1 and uy are vectors of n = 64 inde-
pendent unit normal variables.

Faults are injected in half of these runs (N of 2N total) by
changing arandom bit of the algorithm’s state space at arandom
point of execution. Specifically, the matrix algorithms when
given nx n inputs generally have n stages and operate in place
on an n x n matrix. The Fourier transform has log, n stages
which operate in place on the n-length vector. So for testing, the
algorithmisinterrupted at arandom stage, and itsworkspace per-
turbed by altering exactly one hit of the 64-bit representation of
one of the matrix/vector entriesa to produceanew entry, flip(a).
For example, 1u consists of application of n Gauss transforma-
tions. To inject a fault into 1u, it is interrupted between two
applications of the transformation, and one entry of the work-
ing matrix is altered viaflip. If the entry is used in later stages
of the algorithm, then the fault will fan out across the array; if

(34)
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QR Decomposition: Densities, All Faults Included, T1 test
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Fig. 1. Densities for gr decision criteria T1 and TO under fault-free and faulty conditions. The abscissa shows the log (base 10) of the decision

criterion; the ordinate is its relative frequency.

not, only one element of L or U will be affected. We modified
the well-known algorithms of Press et al. [33] because of their
transparency, but similar results were obtained from other im-
plementations. For mul t, we used the standard inner product or
“i jk” agorithm; for gr, inv, 1u, and ££t we used grdcmp,
gaussj, ludemp, and fourl, al indoubleprecisionversions
and running on | EEE-754 compliant hardware.

For each random draw of agorithm inputs, our simula-
tion computes all four detection criteria (the left-hand sides of
egns. 29-32). This detection criterion is the function that a
fault-detecting al gorithm computes and then comparesto afixed
threshold ru to decide whether to declare afault. In our simu-
lations, this yields two populations of detection criteria—under
fault-free and faulty conditions—for each combination of test
and algorithm. Each population contains N criterion values,
one for each random selection of input arguments.

5.2 Results: Matrix Operations

We begin to understand how the detection criterion affects er-
ror rates by examining onetest in detail. The upper-left panel of
figure 1 shows probability densities of the logarithm (base 10) of
the T 1 detection criterion for gr under fault-free (straight line)
and faulty (crosses) conditions. (In this panel only, the curves
overlap and must be shown with different zero levels; in all pan-
els the left scale is for the fault-free histogram while the right

scale is the faulty histogram.) The fault-free curve is gaussian
in shape, reflecting accumulated roundoff noise, but the faulty
curve has criterion values spread over a wide range due to the
diverse sizes of injected faults. A test attempts to separate these
two populations — for a given 7, both False Alarms (roundoff
errorstagged as datafaults) and Detections (datafaults correctly
identified) will be observed. The area under the fault-free prob-
ability density curve to the right of a threshold r equals the
probability of false alarm, Ps,; areaunder the faulty curve above
7 is Py, the chance of detecting afault.

This panel also shows t* (dashed line), which is defined to be
the smallest tolerance resulting empirically in zero false alarms,
and typ > t* (dash-dot line), the “worst-case” theoretical error
bound of result 3. (We have conservatively used p = 10.) These
threshold lines are labeled as described above, but appear on
the log scale at the value log,o(zu). The point is that use of an
average-case threshold enables detection of all the events lying
between t* and tp, while still avoiding false alarms.

Different test mechanisms deliver different histograms, and
the best tests result in more separated populations. The upper-
right panel shows the naive TO test for gr. This test exhibits
considerable overlap between the populations. Due to incorrect
normalization, errors are spread out over a much greater range
overall (about 30 orders of magnitude) and the fault-free errors
are no longer a concentrated clump near logo(u) ~ —15.7. The
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Average-case Matrices, All Faults

ROC: Matrix Multiply, All Faults Included
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Fig. 2. ROC for random matrices of bounded condition number, including all faults.

lowest threshold which avoids false larms (¢ *, dashed line) is
now so large that it fails to detect alarge proportion of faults.
Of course, some missed fault detections are worse than others
since many faults occur inthe low-order bits of the mantissaand
cause very minor changesin the matrix element, of relative size
Ere = [flip(x) — X|/X (35)
Accordingly, a second set of density curves is shown in the
lower panels of figure 1. There, faults which cause a pertur-
bation of size less than E/J" = 10710 are screened from the
fault-containing curve (the fault-free curve remains the same).
Removing these minor faults moves experiments out of the far
left of the fault-containing curve: in some cases, these are ex-
periments where the roundoff error actually dominates the error
due to the fault. Again, a substantial range of experiments still
exists above t* but below . Aswe shall see, these plots are
typical of those observed for other algorithms.
Characteristicsof atest are concisely expressed using the stan-

dard receiver operating characteristic (ROC) curve. Thisisjusta
parametric plot of the pair (Psa, Pg), varying T to obtain acurve
which illustrates the overall performance of the test — sum-
marizing the essential characteristics of the interplay between
densities seen in figure 1. Large t corresponds to the corner
where Pry = Py = 0; small t yields Pig = Py = 1. Intermedi-
ate values give tests with various accuracy/coverage attributes.
Seefigures 2 and 3. In these figures, T 0 is the line with square
markersand T 3 is marked by upward pointing triangles; TOlies
below T3. T2isshown with left pointing triangles, and T 1, the
optimal test, with asterisks; these two tests nearly coincide. We
useA =0.001inT3.

Because N independent runs are used to estimate both Pj,
and Pg, the standard error for either is (P(1— P)/N)¥/2: the
standard deviation of N averaged 0/1 variables [34, p. 107].
Thus, the standard error of an estimate P of Py, based on N
runs, may be estimated as (P(1— P)/N)Y/2 [34, p. 131]. For
figures 2 and 3 we used N = 20000 and curves have confidence
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Average-case Matrices, Significant Faults
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Fig. 3. ROC for random matrices of bounded condition number, excluding faults of relative size less than 1010,

bounds better than 0.005.

Asforeshadowed by gr infigure 1, the ROCs of figure 2 show
that some faults are so small they cannot be reliably identified
after the fact. Thisis manifested by curvesthat slowly rise, not
attaining Py = 1 until P = 1 as well. Therefore, we show a
second group of ROCs(figure 3). Inthisset, faultswhich causea
perturbation lessthan EM" = 10719, about 30% of &l fauilts, are
screened from the results entirely. Thisiswell above the accu-
racy of single-precision floating point andisbeyond theprecision
of datatypically obtained by scientific experiment, for example.
These ROCs are informative about final fault-detection perfor-
mance in an operating regime where such aloss of precisionin
one number in the al gorithm working state is acceptable.

We may make some general observations about the results.
Clearly TO, the un-normalized test, fares poorly in all experi-
ments. Indeed, for i nv, the correct normalization factor islarge
and T 0 could only detect somefaultsby setting an extremely low
7. Thisillustrates the value of the results on error propagation

that form the basis for the normalized tests. Generally speaking,

TOKT3<T2~T1 (36)

This confirms theory, in which T1 is the ideal test and the oth-
ers approximate it. In particular, T1 and T2 are quite similar
because generally only an enormous fault can change the norm
of amatrix — these cases are easy to detect. And the vector test
T 3 suffers relative to the two matrix tests, losing about 3-10%
in Pq, because the single vector norm is sometimes a bad ap-
proximation to the product of matrix and vector norms used in
T1and T2. However, we found that problem-specific tuning of
A dlows the performanceof T3 to virtually duplicate that of the
superior tests.

To further summarize the results, we note that the most rel-
evant part of the ROC curve is when Psy, &~ 0; we may in fact
be interested in the value P*, defined to be Py when Pi; = 0.
This value is summarized for these experimentsin table I, as
the fault screen E[J" is varied. (Table valuesfor EJJ" = 0 and
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TABLE Il
P* for four matrix operations, average-case inputs

EM™ mult(T'1) svd lu inv(72)
0 847 (.003) 795 (.003) .840 (.003) .824 (.003)
107 943 (.002) .887(.002) .936(.002) .919 (.002)
10713 987 (.001) .941(.002) .984(.001) .968 (.001)
10712 998 (.001) .983 (.001) .998 (.001) .992 (.001)
101 1(001) .996(.001)  1(001) .999 (.001)
1010 1(.001) .999 (.001) 1(.001) 1(.001)
109 1(001) 999 (.001)  1(001)  1(.001)
1078 1(001)  1(001)  1(001)  1(001)
T* 237 13.5 7.09 030
TABLE IV
P* for four matrix operations, worst-case inputs

E;Z‘l” mult svd lu inv(72) gr
0 0.570 0.630 0.605 0423  0.621
107 0622 0703 0669 0476  0.702
10713 0657 0734 0706 0500  0.730
10712 0695 0771 0749 0527  0.779
1071 0723 0809 0780 0552  0.811
10719 0748 0839 0789 0576  0.828
107° 0754 0852 0800 0.600  0.842
1078 0.767 0879 0820 0.629  0.853
T* 1041 47.2 180 5.04 242

1010 caniin fact be read from the ROC curves, figures 2 and 3.)
Standard errors, shown in parentheses, are figured based on the
experiment sample size as described above. This showsthat for
this set of inputs, and this fault injection mechanism, 99% cov-
erage appears for T1 and T2 at approximately EMN = 1012,
this level of performance is surely adequate for most scientific
computation. Also tabulated is the threshold value 7 * at which
P* is attained; this is of course multiplied by u = 2.2x 10716
when usedinthethresholdtest. Ineach casethevalueisreported
for the test without normalization by any leading polynomial in-
volving matrix dimension. In each test, the p = co norm (the
maximum row sum of a matrix) was used, and the checksum
vector had al ones and ||w|l« = 1. The low 7* demonstrates
that significant cancellation of errors occurs.

Table |V iscompiled from similar experiments using aworst-
case matrix population of dightly perturbed versions of the M at-
lab “gallery” matrices. Thisis aworst-case population because
it contains many membersthat are singular or near-singular (17
of the 40 gallery matrices used have condition number greater
than 101°), aswell as members designed as counterexamples or
hard test cases for various algorithms. Only N = 800 tests on
this population were run because of the smaller population of
galery matrices. standard errors are larger, about 0.02. Note
also that the choice of gallery matrices is arbitrary so the sam-
pling biasprobably dominatesthestandard errorsintheseresults.
In worst-case — and no practical application should be in this

11
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Fig. 4. ROC for fault tolerant FFT, including all faults.

regime — coverage drops to about 60-90%. This gives an in-
dication of theloss in fault-detection performanceincurred by a
numerically ill-posed application. Even in this case we see that
significant cancellation of errors occurs, and the ¢ * values do
not change much.

5.3 Results: Fourier Transform

In related simulations we examine the performance of tests
for the Fourier transform. In addition to the randomized weight
vector w1 defined at theend of sec. 2, weal so used adeterministic
vector wo with real and imaginary part both equal to

cos(4n(k—n/2)/n), k=0,1,...n—1 (37

This is a haf-period of a cosine and it exhibits no particular
symmetry in the Fourier transform. However, the ratio between
the largest and smallest elements of thetransform of w» islarger
by afactor of ten than w1. We al so usethe conservation of energy
(Parseval) postcondition

y=f£f£t(x) = lyl2=vnlxl2 (39)
to definearelated test for §y = £££(X)
(Ixl2 = n~Y21912)/1IXll2 = zu (39)

This Parseval test has been normalized to reflect scaling of the
residual by the input’'s magnitude.

The ROC curve in figure 4 summarizes performance of these
tests (N = 20000 samples implies standard errors better than
0.005). The naive TO test has poor performance, as observed
earlier. The Parseval test and the wy checksum test have about
the same performance, but both are clearly bested by the w1
checksumtest. Thisranking isrepeatedin tableV, which shows
P* for various error screens. The w1 checksum test is able to
detect all faultslarger than 10~11. Thelarge gap between 7 * and
the theoretical threshold setting 7 (from result 13) illustrates
again how much can be gained from an average-case outlook.
For £ft the observed scaling of the error is known, both as a
function of input magnitude and input dimension, but the multi-
plicative constant is not.
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TABLE V
P* for three methods of FFT error checking, as fault screen is varied

E;Z;” Checksum 1 Checksum 2 Parseval

0 838(.003)  .771(.003) .783(.003)
107 931(002) .855(.003) .869 (.003)
10713 980 (.001)  .904 (.002) .920 (.002)
10712 997 (.001)  .946 (.002)  .956 (.002)
10~ 1(.001) .975(.002) .970(.001)
10710 1(001)  .986(.002) .973(.001)
1077 1(001)  .988(.002) .974(.001)
1078 1(.001)  .988(.002) .972(.002)
T* 0.076 0.053 9.85
Tub 5 5 —

6 Conclusions and Future Work

Faults within certain common computations— computations
whichin some cases dominate application runtime— canbe de-
tected by exploiting properties their outputs must satisfy. Once
detected at the subroutine level, the subroutine can beretried, or
an exception raised to be caught by a higher level of the fault-
tolerance system software. Following earlier work, we define
tests for eight Fourier and linear-al gebrai ¢ floating-point opera-
tions by checking that the computed quantities satisfy a neces-
sary condition, implied by the form of the operation, to within
a certain tolerance. Theoretical results bounding the expected
roundoff error in a given computation provide tests which gen-
erally work by comparing the norm of a checksum-difference
vector, scaled according to algorithm inputs, to a threshold.

For each operation, a family of readily computable tests is
easy to define and implement (see table Il and egns. 29-32).
The tests have different time/performance tradeoffs. The key
guestion for a fault tolerance practitioner is to set the threshold
to achievethe right tradeoff between correct fault detections and
false alarms. Because of the imprecision inherent in the error
bounds, theoretical results can only give an indication of how
expected error scaleswith algorithm inputs; the precise constants
for best performance must in general be determined empirically
for a given algorithm implementation.

In our simulation tests, the observed behavior of these tests
is in good agreement with theory. All the linear-algebraic op-
erations tested here (mult, gr, svd, 1u, and inv) admit tests
that are effective in detecting faults larger than 1010 at well
above the 99% level on a broad range of matrix inputs. For
factorizations, the easy-to-compute T 3 (vector-norm) test gives
performance within 1-3% of the more complex tests. The naive
un-normalizedtest farespoorly inall tests. For £ £t, achecksum
test with randomly chosen weights also performs very well, de-
tecting all faultslarger than 10~1 and clearly outperformingthe
Parseval-based test. Finally, the simulation resultsillustrate that
conventional error bounds, if followed uncritically, can resultin
tolerances too high by several orders of magnitude for typical
matrix inputs. More faults can be detected by using realistic
thresholds.

Becausethetests may beimplemented aswrappersaround the
overall computation, they may be used with little modification
in any high-performance package. For example, our implemen-
tation consisted of a set of wrappers around various Scal A-
PACK and FFTW subroutines. Our choice of checksum tests
was based on computational cost; for most operations we were
ableto perform the ideal test, but in some cases (such asmult)
weemployed an approximatetest. Wetested our implementation
both by comparing the results with those generated by Matlab
computations and, in the case of ££t, by use of simulated fault
injection at thegranul arity of machineinstructions. Inthesetests
we observed general agreement with theory. For details of these
results, see [35].

As a fina note we observe that other common subroutines,
such as those involving sorting, order statistics, and numerical
integration, also require morethan O (n) time and are candidates
for fault-detecting versions. Additionally, a multiple-checksum
fault-detection scheme would help to raise coverage if thisis
deemed necessary for some applications.
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