
Software-Implemented Fault Detection for
High-Performance Space Applications

Michael Turmon, Robert Granat, and Daniel S. Katz
M/S 126-347; Jet Propulsion Laboratory; Pasadena, CA 91109

{turmon,granat,daniel.s.katz}@jpl.nasa.gov

Abstract

We describe and test a software approach to overcoming
radiation-induced errors in spaceborne applications run-
ning on commercial off-the-shelf components. The approach
uses checksum methods to validate results returned by a nu-
merical subroutine operating subject to unpredictable errors
in data. We can treat subroutines that return results satisfy-
ing a necessary condition having a linear form;the checksum
tests compliance with this condition. We discuss the theory
and practice of setting numerical tolerances to separate er-
rors caused by a fault from those inherent in finite-precision
numerical calculations. We test both the general effective-
ness of the linear fault tolerant schemes we propose, and the
correct behavior of our parallel implementation of them.

1 Introduction

We first outline the general outlook and goals of the space-
borne computing effort motivating this work, and then we
describe the detailed contents of this paper.

1.1 Supercomputing in Space

Within NASA’s High Performance Computing and Com-
munications Program, the Remote Exploration and Exper-
imentation (REE) project [11] at the Jet Propulsion Lab-
oratory will enable a new type of scientific investigation
by bringing commercial supercomputing technology into
space. Transferring such computational power to space will
enable highly-autonomous, flexible missions with substan-
tial on-board analysis capability, mitigating control latency
issues due to fundamental light-time delays, as well as in-
evitable bandwidth limitations in the link between spacecraft
and ground stations. To do this, REE does not need to de-
velop a single computational platform, but rather to define
and demonstrate a process for rapidly transferring commer-
cial high-performance computing technology into ultra-low
power, fault-tolerant architectures for space.

Traditionally, spacecraft components have been
radiation-hardened to protect against faults caused by
natural galactic cosmic rays and energetic protons. Such
radiation-hardening lowers the clock speed and increases
the required power of a component. Even worse, the time
needed to radiation-harden a component guarantees both
that it will be outdated when it is ready for use in space,
and that it has a high cost which must be spread over a
small number of customers. Typically, at any given time,
radiation-hardened components have a power:performance
ratio that is an order of magnitude lower, and a cost that
is several orders of magnitude higher than contemporary
commodity off-the-shelf (COTS) components. The REE
project is therefore attempting to use COTS components in
space, and handling the resulting faults in software. The
project consists of three initiatives: applications, computing
testbeds, and system software.

Under the applications initiative, five Science Applica-
tion Teams (SATs) were chosen to develop scalable science
applications, and to port them to REE testbeds running REE
system software:

• The Gamma-ray Large Area Space Telescope (GLAST)
identifies gamma rays in a sea of background cosmic rays
and reconstructs the gamma ray trajectories.

• The Next Generation Space Telescope (NGST) processes
images on-board to reduce the effect of the cosmic rays
on the CCD cameras. Also, fully on-board tuning of a
deformable mirror allows accurate focus.

• Mars Rover Science, which identifies various materi-
als on Mars using texture analysis and image segmen-
tation. Also, stereo image pairs are analyzed for use in
autonomous navigation.

• The Orbiting Thermal Imaging Spectrometer uses hyper-
spectral images to obtain temperature and emissivity, per-
forms spectral unmixing, and classifies images.

• The Solar Terrestrial Probe Project (STP) examines using
fleets of spacecraft for radio astronomical imaging and
plasma moment analysis.

The power:performance and raw compute speed offered by

1

REE allow these teams to develop new approaches to science
data processing and autonomy. The applications mentioned
above are generally MPI programs which are not replicated,
and therefore can take full advantage of the computing power
of the hardware. (REE also intends to support Triple Mod-
ular Redundancy in software for smaller applications that
require high reliability, as opposed to high availability.)

Under the testbeds initiative, a system designed to deliver
30 MOPS/watt is currently being built, to be delivered in
June 2000. This testbed consists of 40 COTS processors
connected by a COTS network fabric. Through future RFPs,
the project will obtain additional testbeds that perform faster
while using less power. Criteria that are required of the
testbeds are: consistency with rapid transfer (18 month or
less) of new Earth-based technologies to space, no single
point of failure, and graceful degradation in the event of
permanent hardware failure.

The system software initiative will provide the services
required to let the applications use the hardware reliably
in space, as well as creating an easy-to-use development
environment. The system software is also intended to use
commercial components as much as possible. The major
challenge for this initiative is to develop a middleware layer
between the operating system and the applications which
accepts that both permanent and transient faults will occur
and provides for recovery from them.

1.2 Fault Tolerance via Software

Most of the transient faults will be single event upsets
(SEUs); their presence requires that the applications be self-
checking, or tolerant of errors, as the first layer of fault-
tolerance. Additional software layers will protect against
errors that are not caught by the application [5]. For ex-
ample, one such layer would automatically restart programs
which have crashed or hung. This works in conjunction with
self-checking routines: if an error is detected, and the com-
putation does not yield correct results after a set number of
retries, the error handling scheme aborts the program so that
it can be automatically restarted.

SEUs affecting data are particularly troublesome because
they typically have fewer obvious consequences thanan SEU
to code — the latter would be expected to cause an exception.
Note that since memory will be error-detecting and correct-
ing, faults to memory will be largely screened; most data
faults will therefore affect the microprocessor or its cache.

Due to the nature of scientific codes, much of their time is
spent in certain common numerical subroutines — as much
as 70% in one NGST application, for example. Protecting
these subroutines from faults provides one ingredient in an
overall software-implemented fault-tolerance scheme. It is
in this context that we describe and test the mathematical
background for using checksum methods to validate results

returned by a numerical subroutine operating in an SEU-
prone environment. Following the COTS philosophy laid
out above, our general approach has been to wrap exist-
ing parallel numerical libraries (ScaLAPACK, FFTW) with
fault-detecting middleware. We can treat subroutines that
return results satisfying a necessary condition having a lin-
ear form; the checksum tests compliance with this necessary
condition. Here we discuss the theory and practice of setting
numerical tolerances to separate errors caused by a fault from
those inherent in finite-precision numerical calculations.

To separate these two classes of errors, we employ well-
known bounds on error-propagation within linear algebraic
algorithms. These bounds provide a maximum error that is
to be expected due to register effects; any error in excess
of this is taken to be the product of a fault. Adapting these
bounds to the fault tolerant software setting yields a series of
tests having different efficiency and accuracy attributes. To
better understand the characteristics of the tests we develop,
we perform controlled numericalexperiments using the tests,
as well as experiments in an REE testbed environment, as
described above, which supports software fault injection.

1.3 Notation

We close this introduction by introducing some useful
notation. Matrices and vectors are written in uppercase and
lowercase roman letters respectively;AT is the transpose of
the matrix A (conjugate transpose for complex matrices).
Any identity matrix is alwaysI ; context provides its dimen-
sion. A is orthogonal if AAT = I . A square matrix is a
permutation if it can be obtained by re-ordering the rows
of I . The size of a vectorv is measured by itsp-norm,
a non-negative real number‖v‖ p ; similarly for matricesA.
See [8] (hereafter abbreviated GVL), sections 2.2 and 2.3,for
the definitions. Thesubmultiplicative property of p-norms
implies that‖AB‖p ≤ ‖A‖p‖B‖p and similarly for vectors.

2 General Considerations

In this paper we are concerned with these operations:

• Product: find the productAB = P, givenA andB.
• LU decomposition: factorA as A = P LU with P a

permutation,L unit lower-triangular,U upper-triangular.
• Singular value decomposition: factorA asA = U DV T,

whereD is diagonal andU , V are orthogonal matrices.
• System solution: solve forx in Ax = b when givenA

andb
• Matrix inverse: givenA, find B such thatAB = I .
• Fourier transform: givenx , find y such thaty = W x ,

whereW is the matrix of Fourier bases.
• Inverse Fourier transform: giveny, find x such thatx =

W T y.

2

Although standard numerical packages provide many other
routines, the ones above were identified by science applica-
tion teams as the being of the most interest, partly on the
basis of amount of time spent within them.

Each of these operations has been written to emphasize
that some linear relation holds among the subroutine inputs
and its computed outputs; we call this thepostcondition. For
the product, system solution, inverse, and transforms, this
postcondition is necessary and sufficient, and completely
characterizes the subroutine’s task. For the other two, the
postcondition is only a necessary condition and valid results
must enjoy other properties as well. In either case, identi-
fying and checking the postcondition provides a powerful
sanity check on the proper functioning of the subroutine.

Before proceeding to examine these operations in detail,
we mention two points involved in designing fault tolerant
techniques. Suppose for definiteness that we plan to check
onem × n matrix. Any reasonable checksum scheme must
depend on the content of each matrix entry, otherwise some
entries would not be checked. This implies that simply com-
puting a checksum requiresO(mn) operations. Checksum
fault tolerance schemes thus lose their attractiveness for op-
erations takingO(mn) or fewer operations (e.g. trace, sum,
and 1-norm)because it is simpler and more directly informa-
tive to achieve fault-tolerance by repeating the computation.
The second general point is that, although the postcondi-
tions above are linearly-checkable equalities, they need not
be. For example, the largest eigenvalue ofA is bounded by
functions of the 1-norm and the∞-norm, both of which are
easily computed but not linear. One could thus evaluate the
sanity of a computation by checking postconditions that in-
volve such inequalities. None of the operations we consider
requires this level of generality.

The postconditions we consider generically involve com-
paring two linear maps, which are known in factorized form

L1L2 · · · L p
?= R1R2 · · · Rq . (1)

This check can be done exhaustively vian linearly inde-
pendent probes for ann × n system. Of course, exhaus-
tive comparison would typically introduce about as much
computation as would be required to recompute the answer
from scratch. On the other hand, a typical fault to data fans
out across the matrix outputs, and a single probe would be
enough to catch most errors:

L1L2 · · · L pw
?= R1R2 · · · Rqw (2)

for some probe vectorw. This approach, known as result-
checking (RC), is recommended by Blum and Kannan [1]
and, accessibly, Blum and Wasserman [3]. The idea is also
the basis for the checksum-augmentation approach intro-
duced earlier by Huang and Abraham [9] for systolic arrays,
under the name algorithm-based fault tolerance (ABFT).

Both techniques have since been extended and refined by
several researchers [4, 7, 10, 13, 14, 2, 6]; a comparison of
RC and ABFT is in [12].

There are two designer-selectable choices controlling the
numerical properties of this fault detection system: the
checksum weightsw and the comparison method indicated

above by
?=. When no assumptions may be made about the

operands, the first is relatively straightforward: the elements
of w should not vary greatly in magnitude so that results
figure essentially equally in the check. At the minimum,w

must be everywhere nonzero;better still, each partial product
L p′ · · · L pw andRq ′ · · · Lqw of (2) should not vary greatly
in magnitude. For Fourier transforms, this yields a weak
condition onw and its transform — we have chosen a slowly
decaying exponential which satisfies the condition. For the
matrix operations, little can be said in advance about the
factors so we are content to letw be the vector of all ones.
Our implementation allows an arbitraryw to be supplied by
those users with more knowledge of expected factors.

3 Error Propagation

After the checksum vector, the second choice is the com-
parison method. As stated above, we perform comparisons
using the corresponding postcondition for each operation.
To develop a test that is roughly independent of the matrices
at hand, we use the well-known bounds on error propaga-
tion in linear operations. In what follows, we develop a
test for each operation of interest. For each operation, we
first cite a result bounding the numerical error in the com-
putation’s output, and then we use this bound to develop a
corollary defining a test which is roughly independent of the
operands. Those less interested in this machinery might re-
view the first two results and skip to section 4. Throughout,
we useu to represent the numerical precision of the underly-
ing hardware; it is the difference between unity and the next
larger floating-point number.

It is important to understand that the error bounds given
in the results arequalitative and determine the general char-
acteristics of roundoff in an algorithm’s implementation.
The estimates we obtain in this section are bounds based
on worst-case scenarios, and will typically predict round-
off error larger than practically observed. (See GVL, sec-
tion 2.4.6, for more on this outlook.) In the fault tolerance
context, using these bounds uncritically would mean setting
thresholds too high and missing some fault-induced errors.
Their value for us, and it is substantial, is to indicate how
roundoff error scales with different inputs. This allows fault
tolerant routines the opportunity to factor out the inputs,
yielding performance that is more nearly input-independent.
Of course, some problem-specific tuning will likely improve
performance. One goal is to simplify this tuning process as
much as possible.

3

Result 1 Let P̂ = mult(A, B) be computed using a dot-
product, outer-product, or gaxpy-based algorithm. The er-
ror matrix E = P̂ − AB satisfies

‖E‖∞ ≤ n‖A‖∞‖B‖∞u (3)

Proof. See GVL, section 2.4.8.

Corollary 2 An input-independent checksum test for mult
is

d = P̂w − ABw (4)

‖d‖∞/(‖A‖∞‖B‖∞‖w‖∞)
>
< τu (5)

where τ is an input-independent threshold.

The test is expressed as a comparison (indicated by the>
<

relation) with a threshold; the latter is a scaled version of the
floating-point accuracy. If the discrepancy is larger thanτu,
a fault would be declared, otherwise the error is explainable
by roundoff.

Proof. The differenced = Ew so, by the submultiplicative
property of norms and result 1,

‖d‖∞ ≤ ‖E‖∞‖w‖∞ ≤ n‖A‖∞‖B‖∞‖w‖∞u

and the dependence onA andB is removed by dividing by
their norms. The factor ofn is unimportant in this calcula-
tion, as noted in the remark beginning the section.

For the remaining operations, we require the notion of
a numerically realistic matrix. The reliance of numerical
analysts on certain proven algorithms is based on the rar-
ity of certain pathological matrices that cause, for example,
pivot elements in decomposition algorithms to grow expo-
nentially. Even algorithms regarded as stable and reliable
can be made to misbehave when given such unlikely inputs.
Because the underlying routines will fail under such patho-
logical conditions, we may neglect them in designing an
fault tolerant system; such a computation is doomed even
without faults. Accordingly, the results below must assume
that the inputs are numerically realistic to obtain usable error
bounds.

Result 3 Let (P̂, L̂, Û) = lu(A) be computed using a stan-
dard LU decomposition algorithm with partial pivoting. The
backward error matrix E defined by A+ E = P̂ L̂Û satisfies

‖E‖∞ ≤ 8n3ρ ‖A‖∞u (6)

where the growth factorρ depends on the size of certain
partial results of the calculation, and is bounded by a small
constant for numerically realistic matrices.

Proof. See GVL, section 3.4.6.

We note in passing that this is close to the best possible bound
for the discrepancy,because the error in simply writing down
the matrixA must be of order‖A‖u.

Corollary 4 An input-independent checksum test for lu as
applied to numerically realistic matrices is

d = P̂ L̂Ûw − Aw (7)

‖d‖∞/(‖A‖∞‖w‖∞)
>
< τu (8)

where τ is an input-independent threshold.

Proof. We haved = Ew so, by the submultiplicative prop-
erty of norms and result 3,

‖d‖∞ ≤ ‖E‖∞‖w‖∞ ≤ 8n3ρ ‖A‖∞‖w‖∞u .

As before, the factor of 8n3 is unimportant in this calculation.
For numerically realistic matrices, the growth factorρ is
bounded by a constant, and the indicated test is recovered
by dividing by the norm ofA.

Result 5 Let (Û , D̂, V̂) = svd(A) be computed using a
standard singular value decomposition algorithm. The for-
ward error matrix E defined by A + E = Û D̂V̂ T satisfies

‖E‖2 ≤ ρ ‖A‖2u (9)

where ρ is a constant not much larger than one for numeri-
cally realistic matrices A.

Proof. See GVL, section 5.5.8.

Corollary 6 An input-independent checksum test for svd
as applied to numerically realistic matrices is

d = Û D̂V̂ Tw − Aw (10)

‖d‖∞/(‖A‖∞‖w‖∞)
>
< τu (11)

where τ is an input-independent threshold.

Proof. See the appendix.

The test for SVD has the same normalization as for LU de-
composition.

Result 7 Let B̂ = inv(A) be computed using Gaussian
elimination with partial pivoting. The backward error ma-
trix E defined by (A + E)−1 = B̂ satisfies

‖E‖∞ ≤ 8n3ρ ‖A‖∞u (12)

with ρ as in result 3.

Proof. See GVL, section 3.4.6, which defines the backwards
error for the linear system solutionAx = b. SinceA−1 is
calculated by solving the multiple right-hand-side problem
AA−1 = I , the bound given there on‖E‖∞ applies here
with the same growth factorρ. (This growth factor depends
only on the pivots in the LU factorization which underlies
the inverse computation.)

4

Algorithm � σ1 σ2 σ3 Note

mult P̂ − AB ‖A‖‖B‖ ‖ P̂‖ ‖P̂w‖ —

lu P̂ L̂Û − A ‖A‖ ‖P̂ L̂Û‖ ‖Aw‖ σ1 easier thanσ2

svd Û D̂V̂ − A ‖A‖ ‖Û D̂V̂ T‖ ‖Aw‖ σ1 easier thanσ2

inv I − AB̂ ‖A‖‖A−1‖ ‖A‖‖B̂‖ ‖A‖‖B̂w‖ ‖AB̂w‖ useless

fft (ŷ − W x)T ‖x‖ — — result is a vector

ifft (x̂ − W T y)T ‖y‖ — — result is a vector

Table 1. Algorithms and corresponding checksum tests.

Corollary 8 An input-independent checksum test for inv
as applied to numerically realistic matrices is

d = w − AB̂w (13)

‖d‖∞/(‖A‖∞‖A−1‖∞‖w‖∞)
>
< τu (14)

where τ is an input-independent threshold.

Proof. See the appendix.

We remark that this bound on discrepancy, larger than that for
lu, is the reason matrix inverse is numerically unstable. We
close this section with tests for Fourier transform operations.
Then × n forward transform matrixW contains the Fourier
basis functions, recall thatW/

√
n is unitary.

Result 9 Let ŷ = fft(x) be computed using a decimation-
based fast Fourier transform algorithm; let y = W x be
the infinite-precision Fourier transform. The error vector
e = ŷ − y satisfies

‖e‖∞ ≤ n log2 n ‖x‖∞u (15)

Proof. See the appendix.

Corollary 10 An input-independent checksum test for fft
is

d = (ŷ − W x)Tw (16)

|d|/(‖x‖∞‖w‖∞)
>
< τu (17)

where τ is an input-independent threshold.

Proof. This follows from result 9 after neglecting the leading
constant.

Corollary 11 An input-independent checksum test for
ifft is

d = (x̂ − W T y)Tw (18)

|d|/(‖y‖∞‖w‖∞)
>
< τu (19)

where τ is an input-independent threshold.

Proof. The proof,very similar to corollary 10, is omitted.

4 Implementing the Tests

It is straightforward to transform these results into al-
gorithms for error detection via checksums. The principal
issue is computing the desired matrix norms efficiently from
results needed in the root calculation. For example, in the
matrix multiply, instead of computing‖A‖‖B‖, it is more
efficient to compute‖ P̂‖ which equals‖AB‖ under fault-
free conditions. By the submultiplicative property of norms,
‖AB‖ ≤ ‖A‖‖B‖, so this substitution always underesti-
mates the upper bound on roundoff error, leading to false
alarms. On the other hand, we must remember that the norm
bounds are only general guides anyway. All that is needed
is for ‖AB‖ to scale as does‖A‖‖B‖; the unknown scale
factor can be absorbed intoτ .

Taking this one step farther, we might compute‖ P̂w‖
as a substitute for‖A‖‖B‖‖w‖. Here we run an even
greater risk of underestimating the bound, especially ifw is
nearly orthogonal to the product, so it is wise to use instead
λ‖w‖ + ‖P̂w‖ for some problem-dependentλ. Extending
this reasoning to the other operations yields the comparisons
in table 1. The error criterion used there always proceeds
from the numberδ = ‖�w‖ for the indicated difference ma-
trix �; this matrix is of course never explicitly computed.
In addition to the obvious

T 0 : δ/‖w‖ >
< τu (trivial test) (20)

we provide three other comparison tests

T 1 : δ/(σ1‖w‖)
>
< τu (ideal test) (21)

T 2 : δ/(σ2‖w‖)
>
< τu (approx. matrix test) (22)

T 3 : δ/(λ‖w‖ + σ3)
>
< τu (approx. vector test) (23)

The ideal test is the one recommended by the theoretical
error bounds, and is based on the supplied input arguments,
but may not be computable (e.g., forinv). In contrast, both
approximate tests are based on computed quantities,and may
also be suggested by the reasoning above. Thematrix test

5

Average-case Matrices, All Faults

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC: Matrix Multiply, All Faults Included

|w|
|A| |B| |w|
|P

hat
| |w|

1 + |P
hat

 w|

Pfa

Pd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC: Inverse, All Faults Included

|w|
|A| |B| |w|
|A| |B

hat
| |w|

1 + |A| |B
hat

 w|

Pfa

Pd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC: LU Decomposition, All Faults Included

|w|
|A| |w|
|A

hat
| |w|

1 + |A w|

Pfa

Pd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC: SVD, All Faults Included

|w|
|A| |w|
|A

hat
| |w|

1 + |A w|

Pfa

Pd

Figure 1. ROC for random matrices of bounded condition number, including all faults.

involves a matrix norm while thevector test involves a vector
norm and is therefore more subject to false alarms. (Several
variants of the matrix tests are available for these operations.)
We note that the obvious vector test forinv usesA B̂w, but
sinceB̂ = inv(A), this test becomes almost equivalent to
T 0: so we suggest using the vector/matrix test shown in
table 1. The ideal testsT 1 for the Fourier transforms need
only the norm of the input, which is readily calculated, so
other test versions are omitted. Clearly the choice of which
test to use is based on the interplay of computation time
and fault-detection performance for a given population of
input matrices. Because of the shortcomings of numerical
analysis, we cannot predict definitively that one test will
outperform another. The experimental results reported in
the next section are one indicator of real performance, and
may motivate more detailed analysis of test behavior.

5 Results: Simulated Fault Conditions

We first discuss Matlab simulations of the checksum tests
for the operationsmult, lu, svd, andinv under fault
conditions. We then discuss the behavior of a fault tolerant

fft operation as implemented on a testbed environment,
and tested using simulated fault injection.

5.1 Matlab Simulations

In this section we show results of Matlab simulations
of the proposed checksum tests. These simulations are in-
tended to verify the essential effectiveness of the checksum
technique for fault tolerance, as well as to sketch the relative
behaviors of the tests described above. Due to the special
nature of the population of test matrices, and the shortcom-
ings of the fault insertion scheme, these results should not
be taken as anything but an estimate of relative performance,
and a rough estimate of ultimate absolute performance.

We briefly describe the simulation setup. In essence a
population of random matrices is used as input to a given
computation; faults are injected in half these computations,
and a checksum test is used to attempt to identify the affected
computations. Random test matricesA of a given condition
numberκ are generated by the rule

A = 10α U Dκ V T . (24)

6

Average-case Matrices, Significant Faults

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC: Matrix Multiply, Excluding Faults < 1.0e−08

|w|
|A| |B| |w|
|P

hat
| |w|

1 + |P
hat

 w|

Pfa

Pd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC: Inverse, Excluding Faults < 1.0e−08

|w|
|A| |B| |w|
|A| |B

hat
| |w|

1 + |A| |B
hat

 w|

Pfa

Pd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC: LU Decomposition, Excluding Faults < 1.0e−08

|w|
|A| |w|
|A

hat
| |w|

1 + |A w|

Pfa

Pd

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC: SVD, Excluding Faults < 1.0e−08

|w|
|A| |w|
|A

hat
| |w|

1 + |A w|

Pfa

Pd

Figure 2. ROC for random matrices of bounded condition number, excluding faults of relative size
less than 10−8.

The random matricesU andV are the orthogonal factors in
the QR factorization of two square matrices with normally
distributed entries. The diagonal matrixDκ is filled in by
choosing random singular values, such that the largest sin-
gular value is unity and the smallest is 1/κ . These matrices
all have 2-norm equal to unity; the overall scale is set byα

which is chosen uniformly at random between -8 and +8.
A total of 2000 64× 64 matrices (forty applications of the
rule (24) for eachκ in {21, ..., 220}) is processed.

Faults are injected in half of these runs (1000 of 2000)
by first choosing a matrix to affect, and then flipping exactly
one bit of its 64-bit representation. For example, if a call to
If lu is to suffer a simulated fault, first one ofA, L, or U
is selected, and then one bit of the chosen matrix is toggled.
If A was selected, one can expect the computedL̂ andÛ to
have many incorrect elements; ifL was selected, only one
element of the LU decomposition would be in error. This
scheme is intended to simulate errors occurring at various
times within the computation.

Characteristics of a given scheme are concisely expressed
using the standard receiver operating characteristic (ROC)

curve. For a given error tolerance, a certain proportion of
False Alarms (numerical errors tagged as data faults,P f a)
and Detections (data faults correctly identified,Pd) will be
observed. The ROC plots these two proportions paramet-
rically as the tolerance is varied; this describes the perfor-
mance achievable by a certain detectionscheme and provides
a basis for choosing one scheme over others.

Each of the four tests described above is used to identify
faults; for a fixedτ this implies observing a certain false
alarm rate and fault-detection rate. The pair(P f a, Pd) may
be plotted parametrically, varyingτ to obtain an ROC curve
which illustrates the overall performance of the test. See
figure 1. In these figures,T 0 is the line with square markers
and T 3 is marked by upward pointing triangles;T 0 lies
below T 3. T 2 is shown with left pointing triangles, and
T 1, the optimal test, with asterisks; these two tests nearly
coincide.

Of course, some missed fault detections are worse than
others since many faults occur in the low-order bits of the
mantissa and cause very minor changes in the matrix. Ac-
cordingly, a second set of ROCs is shown in figure 2. In

7

Average-Case Worst-Case
All Sig. All Sig.

mult 0.85 1.00 0.63 0.92
inv 0.80 1.00 0.32 0.50
lu 0.54 1.00 0.43 0.90
svd 0.84 1.00 0.60 0.87
Mean 0.74 1.00 0.50 0.80

Table 2. P∗ for four sets of experiments.

this set, faults which cause such a minute perturbation are
screened from the results entirely; the screen is placed at a
fault size of one part in 10−8 and filters about 40% of all
faults. This corresponds to the accuracy of single-precision
floating point and is well beyond the precision of the science
data being analyzed. These ROCs are more informative
about fault-detection performance in an operating regime
similar to that of our science applications.

We may make some general observations about the re-
sults. ClearlyT 0, the un-normalized test, fares poorly in all
experiments. This illustrates the value of the results on er-
ror propagation that form the basis for the normalized tests.
Generally speaking,

T 0 � T 3 < T 2 ≈ T 1 . (25)

This confirms theory, in whichT 1 is the ideal test and the
others approximate it. In particular,T 1 andT 2 are quite
similar because generally only an enormous fault can change
the norm of a matrix — these cases are easy to detect.

Further, we note that the most relevant part of the ROC
curve is whenP f a ≈ 0; we may in fact be interested in
the valueP∗, defined to bePd when P f a = 0. This value
is summarized for these experiments in table 2. The first
two columns of this table come from the data in figures 1
and 2. The other columns are from similar experiments us-
ing a worst-case matrix population taken from the Matlab
“gallery” matrices; this is a worst-case population because
it contains many members that are not “numerically realis-
tic” in the sense of section 3. Under the average-case test
conditions, essentially all faults could be detected with no
false alarms; this level of performance is surely adequate for
REE purposes. In worst-case — and no science application
should be in this regime — effectiveness drops to about 80%.
This gives an indication of the loss in fault-detection perfor-
mance incurred by a numerically ill-posed application.

5.2 Testbed Simulations

Effectiveness of the fault tolerantfft routine, imple-
mented in C, was carried out on the REE interim testbed,
a parallel system running the Lynx OS. Fault injection soft-
ware available on the testbed was used to simulate radiation-
induced SEUs affecting memory, registers, code, and the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pfa

Pd

Figure 3. ROC for fault tolerant FFT.

stack. A population of uniformly scaled random matrices
was used as the input to thefft routine. The test was
conducted in the following manner: each calculation was
performed twice — once without the use of fault injection,
and once while under the influence of simulated fault in-
jection, during which zero or more faults were induced in
memory as the calculation was being performed. The result
with and without fault simulation was compared for each
matrix, in order to verify whether a fault had been injected.
For purposes of characterizing the performance of the fault
detection, differences between the two results were consid-
ered insignificant (not faulty) if the square error was less
than 10−8. We note that this is similar, but not identical to
the manner in which significant faults were identified in the
preceding section.

Figure 3 shows an ROC curve summarizing the result of
the tests for 1000 input matrices. This curve is not directly
comparable to those in figures 1 and 2; nevertheless we ob-
serve that the fault tolerantfft does detect over 70% of
errors without risk of false alarms. Our explanation of this
result is inhibited by the limitations of the instrumentation:
the fault injection software currently does not record the
times, locations, or magnitudes of injected faults. However,
one possible explanation for some faults going undetected
is that the testbed allows faults to be injected in the matrix
after it has been used in calculation of the checksum. Im-
provements in instrumentation shouldallow a more thorough
analysis of these results. With increased understanding we
believe these results can be improved.

6 Parallel Implementation

In our parallel implementation of the checksum proce-
dures we use the ScaLAPACK routinesPDGEMM for mult,
PDGETRF for lu, PDGETRI for inv, andPDGESVD for
svd. Formult, we use the checksum testT 2 for reasons of
computational cost, as the test requires only the calculation

8

of the norm of the resultant matrix product. Forlu andsvd,
we employ the ideal checksum testT 1, as in these cases the
norm of the matrix can be calculated before the factorization
is performed in place. Our choice of checksum test forinv
is complicated by the fact thatPDGETRI requires that the
input matrix already be in its LU-factorized form. We there-
fore employ a modified version of the checksum testT 3, in
whichσ3 = ‖B̂‖‖Aw‖: B̂ is readily available as the result
of the computation, andAw can be obtained by multiplying
w successively bŷU , L̂, andP̂ .

In our implementation we consider the possibility that
induced faults could affect the calculated norms, thereby
compromising the validity of the checksum test. To prevent
erroneously large norms from eliminating errors from de-
tection, the routines compare the norms against the system
dependent maximum double precision floating point value;
detection of a norm that exceeds that value raises an error.

In order to address numerical issues concerning our im-
plementation of the checksum procedures, we compared
the results of our implementation with those generated by
Matlab computations. We performed a series of tests us-
ing an assortment of randomly perturbed matrices from the
Matlab gallery selection. These matrices are generally ill-
conditioned or poorly scaled, but serve as a demanding test
to check our routines against a known standard.

From our tests, we ascertained that there is excellent
agreement between Matlab and the ScaLAPACK implemen-
tation of our routines. Indeed, when the matrix is badly
scaled, ill-conditioned, or numerically unrealistic — caus-
ing ScaLAPACK and Matlab to differ according to the full
answer — our ScaLAPACK implementation finds the error
in the checksum calculation also. In essence, the message
is: if the computation did not succeed, the checksum test
discovers it.

7 Conclusions and Future Work

Theoretical results bounding the expected roundoff er-
ror in a given computation provide several types of input-
independent threshold tests for checksum differences. The
observed behavior of these tests is in good general agreement
with theory, and readily computable tests are easy to define.
All the linear algebra operations considered here (mult,
lu, inv, andsvd) admit tests that are effective in detect-
ing faults at the 99% level on typical matrix inputs. Tests of
the numerical characteristics of our parallel implementation
of the fault detection schemes indicate excellent agreement
with another numerical package for most operations, except
in cases when the matrix is badly scaled, ill-conditioned, or
numerically unrealistic. In those cases, the schemes detect
an error in the checksum calculation.

Test programs calling our parallel implementations have
been installed on the REE project testbed, where they can be

tested under simulated fault conditions. Of the operations
described here,mult andfft have both been tested not
only under the protection of the fault tolerant schemes de-
scribed here, but also under an additional layer of software
fault tolerance as described in Section 1.2.

The fault tolerantfft routines have also been integrated
into the image texture analysis and segmentation applica-
tion which is part of the Mars Rover Science project. This
application is being tested with simulated fault injections
on the REE project testbed under the software framework
described above, both with and without the fault tolerant
routines. While conclusive results are not yet available, pre-
liminary testing indicates that the checksum scheme effec-
tively protects the Fourier transform operations within the
application from SEUs.

We expect that continued integration of fault tolerant rou-
tines with the various science applications will lead to these
applications being resistant to SEUs throughout large por-
tions of the computation. Other common subroutines, such
as those involving sorting, order statistics, and numerical
integration, also require more thanO(n) time and are can-
didates for fault-hardened versions. The fault-hardening de-
scribed here is just one of the protections that will be needed
to use COTS computers in space, but it is an essential one.

Acknowledgment

This work was carried out by the Jet Propulsion Labora-
tory, California Institute of Technology, under contract with
the National Aeronautics and Space Administration.

References

[1] M. Blum and S. Kannan. Designing programs that check their
work. In Proc. 21st Symp. Theor. Comput., pages 86–97, 1989.
[2] M. Blum, M. Luby, and R. Rubinfeld. Self-testing correcting
with applications to numerical problems.Journal of computer and
system sciences, 47(3):549–595, 1993.
[3] M. Blum and H. Wasserman. Reflections on the Pentium
division bug.IEEE Trans. Computing, 45(4):385–393, 1996.
[4] D. L. Boley, R. P. Brent, G. H. Golub, and F. T. Luk. Algo-
rithmic fault tolerance using the Lanczos method.SIAM J. Matrix
Anal. Appl., 13(1):312–332, 1992.
[5] F. Chen, L. Craymer, J. Deifik,A. J. Fogel, D. S. Katz,A. G. S.
Jr., R. R. Some, S. A. Upchurch, and K. Whisnant. Demonstra-
tion of the REE fault-tolerant parallel-processing supercomputer
for spacecraft onboard scientific data processing. InProc. ICDSN
(FTCS-30 & DCCA-8), 2000.
[6] A.-R. Chowdhury and P. Banerjee. A new error analysis based
method for tolerance computation for algorithm-based checks.
IEEE Trans. Computing, 45(2), 1996.
[7] M. P. Connolly and P. Fitzpatrick. Fault-tolerent QRD recur-
sive least squares.IEE Proc. Comput. Digit. Tech., 143(2):137–144,
1996. (IEE, not IEEE).

9

[8] G. H. Golub and C. F. V. Loan.Matrix Computations. Johns
Hopkins Univ., Baltimore, second edition, 1989.
[9] K.-H. Huang and J. A. Abraham. Algorithm-based fault tol-
erance for matrix operations.IEEE Trans. Computing, 33(6):518–
528, 1984.
[10] F. T. Luk and H. Park. An analysis of algorithm-based fault
tolerance techniques.Journal of Parallel and Distributed Comput-
ing, 5:172–184, 1988.
[11] REE project, March 1999. “Project Plan: Remote Ex-
ploration and Experimentation (REE) Project,” available at
www-ree.jpl.nasa.gov.
[12] P. Prata and J. G. Silva.Algorithm-based fault tolerance versus
result-checking for matrix computations. InProc. FTCS-29, pages
4–11, 1999.
[13] S. J. Wang and N. K. Jha. Algorithm-based fault tolerance for
FFT networks.IEEE Trans. Computing, 43(7):849–854, 1994.
[14] H. Wasserman and M. Blum. Software reliability via run-time
result-checking.Journal of the ACM, 44(6):826–849, 1997.

Appendix

Proof of Corollary 6. Let d = Û D̂V̂ Tw − Aw; thend =
Ew whereE is the error matrix bounded in result 5. We
claim that an input-independent checksum test forsvd is

‖d‖2/(‖A‖2‖w‖2)
>
< τu . (26)

Indeed, by the submultiplicative property and result 5,

‖d‖2 ≤ ‖E‖2‖w‖2 ≤ ρ ‖A‖2‖w‖2u

and the dependenceonA is removedby dividing by its norm.
The constantρ is negligible for numerically realistic matri-
ces, and the claim follows. To convert this test, which uses
2-norm, into one using the∞-norm, we note that these two
norms differ only by constant factors (see GVL sections 2.2.2
and 2.3.2) which may be absorbed intoτ .

Proof of Corollary 8. Note thatd = �w where� = I −
A(A + E)−1. Some algebra is necessary to extract the error
E from �. Using the Sherman-Morrison formula (GVL
section 2.1.3) to rewrite the inverse ofA + E we obtain

� = I − A[A−1 − A−1(I + E A−1)−1E A−1]
= (I + E A−1)−1E A−1 (27)

For numerically realistic matrices,A dominatesE and the
first factor is negligible. Heuristically, this is because
E � A implies E A−1 � AA−1 = I , collapsing that
factor to I . More formally, inverting a numerically real-
istic matrix produces an error matrixE such that for any
vector v, ‖Ev‖ � ‖Av‖ otherwise the backward error
E would be comparable toA. Sincev is arbitrary and
A is invertible, we may letv = A−1u, obtaining that
‖E A−1u‖ � ‖u‖ = ‖Iu‖, showing that the operatorE A−1

is dominated byI . Therefore we may neglect the first factor
and the norm of the error is bounded by

‖d‖∞ = ‖�w‖∞
≤ ‖E‖∞ ‖A−1‖∞ ‖w‖∞
≤ 8n3ρ ‖A‖∞ ‖A−1‖∞ ‖w‖∞u (28)

using the submultiplicative property ofnorms. As before, the
factor of 8n3 is unimportant in this calculation. Invoking the
assumption thatA is a numerically realistic matrix allows us
to neglect the growth factorρ, yielding the indicated test.

Proof of Result 9. Decimation algorithms are based oncom-
pact factorizations of then × n unitary transform matrixW :

y = WN WN−1 · · · W1 x

whereN = log2 n, and eachWk performs one bank ofn/2
“butterfly” operations. The infinite-precision computation
may therefore be written as a recurrence

z0 = x

zk+1 = Wk+1 zk (k ≥ 0)
(29)

wherey = zN . The finite-precision computation finds, in
turn,

ẑ0 = x

ẑk+1 = mult(Wk+1, ẑk) (k ≥ 0)
(30)

andŷ = ẑ N . The proof proceeds by developing a recurrence
for the size (always expressed in∞-norm)of the error vector

ek+1 = zk+1 − ẑk+1

= Wk+1 zk − mult(Wk+1, ẑk)

= Wk+1 zk − (Wk+1 ẑk + ẽk)

= Wk+1 ek − ẽk (31)

where by Result 1, and the observation that exactly two en-
tries of each row ofWk are nonzero,̃ek satisfies

‖ẽk‖ ≤ 2‖Wk+1‖ ‖ẑk‖u

= 2‖zk − ek‖u

≤ 2(‖zk‖ + ‖ek‖)u . (32)

Combining with (31) yields the bound

‖ek+1‖ ≤ ‖Wk+1‖‖ek‖ + 2(‖zk‖ + ‖ek‖)u

= (1 + 2u)‖ek‖ + 2‖zk‖u . (33)

Since‖Wk‖ = 2,‖zk‖ ≤ 2k‖x‖, and we obtain the recurrent
upper bound

‖e0‖ = 0

‖ek+1‖ ≤ (1 + 2u)‖ek‖ + 2k+1‖x‖u (k³0)
(34)

For any reasonable floating-point system, 1+2u ≤ 2. Using
this, it is easy to see‖ek‖ ≤ k 2k ‖x‖u, establishing the claim
‖eN ‖ ≤ n logn ‖x‖u.

10

