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Abstract

The Ocean Observatories Initiative (OOI) will deploy
a network of in-situ sensors, orbital assets and numer-
ical models that synthesize collected data to forecast
ocean conditions. We have implemented a prototype
mission planning system for autonomous glider sub-
mersibles within this infrastructure. This system will be
refined for the upcoming Observing System Simulation
Experiment (OSSE) and eventual incorporation into the
OOI. We describe our two-stage planning process in-
volving abstract cartographic and more complete de-
tailed representations. A new path planning algorithm
exploits current forecasts to compute efficient paths
between operator-specified waypoints. Experiments
demonstrate significant improvements in path selec-
tion for a case study involving Regional Oceanographic
Modeling System (ROMS) current forecast data.

Introduction
Recent work in Earth-observing sensor networks demon-
strates autonomous coordination of in-situ and orbital sen-
sors that monitor, detect, and react to dynamic climactic
phenomena in real time (Chien et al. 2005; Morris et al.
2008). In coming years the Ocean Observatories Initiative
(OOI) will carry these concepts to the deep ocean (Given,
Banahan, and Williams 2007). The OOI will incorporate
platforms such as moorings and autonomous submersibles.
It will synthesize these measurements with numerical mod-
els that incorporate collected data and generate forecasts for
future conditions. A data distribution network will dissemi-
nate these forecasts to users around the world, while an on-
going science investigation will refine the core models and
improve our understanding of physical processes in the dy-
namic ocean.

The OOI infrastructure will support underwater gliders,
autonomous vehicles are which are well suited for long-
term missions (Schofield et al. 2007). They locomote by
changing buoyancy to generate vertical forces. Winged sur-
faces translate these depth oscillations into forward thrust.
The result is a sawtooth trajectory that can propel the glider
thousands of kilometers on a single battery charge. Slocum
gliders, for instance, have participated in successful deploy-
ments ranging from whale vocalization studies to coastal
physics and ecology (Dickey 2009). Such gliders will play a
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Figure 1: Planning workflow. The operator generates carto-
graphic plans in a visual map interface. These are converted
into detailed plans which can be edited in a timeline view
and validated in a dynamic simulation. Glider image cour-
tesy Rutgers University, map views courtesy Google, Inc.

significant role in the OOI by deploying instruments such as
Conductivity, Temperature, and Depth (CTD) packages and
advanced mission-specific sensors.

This work presents a strategy for Slocum Glider mission
planning and execution developed as a technology integra-
tion prototype preceding the OOI construction. This system
will support an Observing System Simulation Experiment
(OSSE) to test cyberinfastructure capabilities using a simu-
lated glider deployment to the mid-Atlantic bight. We will
continue to refine the mission planning system to facilitate
these experiments and eventual incorporation into the OOI
Cyberinfastructure (Chave et al. 2009).

This problem area presents several new technological
challenges. First, the gliders only provide sparse coverage of



the vast spatiotemporal volume under observation. Deploy-
ments to support numerical models must coordinating multi-
ple assets to cover the most important areas (Dickey 2009).
Second, downlinking data or receiving new commands re-
quires that the glider stop other activities and surface to ac-
tivate its satellite link. Missions typically limit gliders to
sporadic communications at 3 to 8 hour intervals (Schofield
et al. 2007). Between communications gliders must oper-
ate autonomously and respond appropriately to any unan-
ticipated events and science data. Finally, planners must
account for time-varying currents that can significantly af-
fect navigation. These ocean currents can easily overwhelm
the glider’s own propulsion; accounting for current dynam-
ics during path planning is essential for mission success and
glider safety.

We begin by describing our general approach to schedul-
ing and persecution. Mission planners use a two-stage pro-
cess: they generate a coarse cartographic plan and then re-
fine it into a detailed executable plan which respects vehicle
dynamics. Later sections discuss each stage in greater detail.
We present a new path planning algorithm that leverages
model forecasts and computes optimal glider paths through
time-varying current fields. Tests demonstrate significant
improvements in path quality over interpolated waypoint
methods currently in use. Finally, we describe progress on a
planning and execution architecture for these glider mission
plans, including a shoreside simulation of vehicle dynamics
and an onboard architecture for robust execution.

General Approach
The proposed planning strategy uses two levels of granu-
larity called the cartographic and detailed representations
(Figure 1).

The cartographic plan is a sequence of mutually-exclusive
mission activities, each of which occupies a specific time
interval and exercises exclusive control over the glider. In
the first planning stage operators use a map-based interface
to modify the cartographic representation and design timed
paths between waypoint locations. This stage emphasizes
science-relevant factors such as vehicle location, ocean cur-
rent forecasts and overlays of remote sensing data. It ab-
stracts from vehicle dynamics and related control parame-
ters that can generally be determined automatically. An in-
terface displays a map of the mission area along with the
positions of waypoints and activities, and overlays of rele-
vant model forecasts (Figure 2). We anticipate that users will
interact mostly with this simplified cartographic plan, defer-
ring computationally expensive and time-consuming valida-
tion until after the basic path has been established. During
the cartographic phase a path planner determines waypoints’
reachability and efficient connecting paths based on a sim-
plified motion model and 48-hour current forecasts.

After operators are satisfied with the initial plan waypoint
locations are fixed and an automatic translation expands the
sequence into a complete detailed plan. The detailed plan
adds specificity in the form of lower-level behaviors, sev-
eral of which may be active simultaneously. The detailed
planning phase tracks depletable resources and maximizes
energy or time efficiency by altering factors such as glider

Figure 2: Cartographic plan with three waypoints (red) and
optimal interpolated paths (thick white lines). Yellow poly-
gons show current-based reachability envelopes for each
hour after the second surfacing. Image courtesy Google
Earth, Google, Inc.

pump displacement and depth. The two representations
are not isomorphic - each cartographic plan corresponds to
many possible detailed plans. Operators visualize and ad-
just the detailed plan in a timeline interface that tracks glider
state variables, resources, and active behaviors (Figure 3).

Finally, operators can validate the detailed plan using a
full dynamic simulation that considers the effect of adaptive
control on vehicle performance. A copy of the onboard ex-
ecution system runs the entire plan in a three-dimensional
“virtual ocean.” In our execution architecture an exec-
utive process commands the vehicle through a behavior-
based control methodology using the MOOS-IvP architec-
ture (Eickstedt et al. 2007). The executive activates and
manages these low-level behaviors in the appropriate se-
quence while monitoring environmental conditions and ve-
hicle safety. Our simulation currently uses a generic AUV
control strategy with a simplified dynamic model but will
eventually account for both vehicle dynamics and glider-
specific adaptive behaviors. These control behaviors will
respond realistically to currents that vary at different depths.

The dynamic simulation may suggest adjustments to spe-
cific activities. If significant changes are required operators
can return to the cartographic representation in order to re-
vise the basic path. When the simulation results are satisfac-
tory the plan is ready for uplink to the glider. Onboard the
vehicle, an identical copy of the executive and MOOS-IvP
behavior stack can execute the final plan.

The Cartographic Plan
This section details the initial planning step in which opera-
tors determine glider paths and surfacing locations. Opera-
tors examine the cartographic plan, along with remote sens-
ing and forecast data, in an interface based on the Google



Figure 3: ASPEN timeline interface for the detailed plan-
ning step. Horizontal bars represent quantities such as re-
source use and vehicle state, as well as the activities in
progress at each mission timestep.

Earth software package (Google Earth Software Package
2009). A simple “timeline slider” shows vehicle progress
over time and the geographic location of mission activities
and waypoints (Figure 2). The operator seeds path plan-
ning by selecting locations of waypoint goals and commu-
nications surfacings. A typical plan might include any-
where from zero to five such intermediate destinations in a
three-hour communications cycle. The path planner com-
putes travel times between these waypoints. It provides the
interpolating path that arrives as early as possible at each
operator-specified location, with an accuracy determined by
the resolution of the planning grid.

Ocean currents change on an hourly basis, and current-
sensitive path planning will be important for mission safety
and science return. Fortunately ocean simulator models can
predict currents on scales and accuracies that support glider
path planning. These models exploit surface measurements,
shore-based radar and remote sensing data to generate fore-
casts up to 24 or 48 hours in advance with kilometer-scale
spatial resolution at up to 30 depth levels (Li et al. 2006;
Wang et al. 2008). Our path planner uses travel time esti-
mates based on current forecasts and a sawtooth glider tra-
jectory with fixed minimum and maximum depths. Here we
assume constant glider propulsion and ignore factors like
custom flight parameters, bathymetry, salinity, and uncer-
tainty in current predictions. The following sections will de-
scribe this calculation in greater detail.

More generally the path planner determines whether a se-
quence of waypoint locations and times is achievable by any
path. It computes reachability envelopes: polygons showing
the area that is reachable by the glider at future times (Figure
2). These isocontours summarize current constraints on fea-
sible paths. Operators can shift waypoints within the reach-
ability envelopes to provide additional margins of error or to
maximize the travel distance; the system responds by updat-
ing the cartographic plan with the optimal interpolation.

Path Planning: Background
Here we describe the planning algorithm that computes op-
timal glider paths in time-varying current fields. This sys-
tem uses it to interpolate between waypoint locations but
the algorithm itself is more general and permits destinations
defined by arbitrary, and possibly disjoint, spatiotemporal
volumes.

Several existing path planning algorithms account for cur-
rent fields. Kruger et al. treat path planning as a nonlinear
optimization problem with an objective function based on
travel time and energy (Kruger et al. 2007). Pêtrès et al.
demonstrate a general path planning approach for generating
smooth trajectories against a static current field (Pêtrès et al.
April 2007). Soulignac et al. describe a “sliding wavefront”
algorithm that propagates costs within a polygonal lattice
to account for strong but static current effects (Soulignac,
Taillibert, and Rueher 2008). Others permit currents to vary
over time, such as the trajectory optimization of Zhang et al
(Zhang et al. 2008). Later work by Soulignac et al. allows
for delayed departures, propagating path cost expressed as a
function of departure time (Soulignac, Talilibert, and Rueher
2009).

In general these algorithms begin with fixed departure and
goal locations, and choose a path to optimize an objective
based on trip duration or energy. Our path planner deals
with the more general case where the destination is defined
in both space and time. Guaranteeing arrival time is impor-
tant for glider operations since currents can change on an
hourly basis. Moreover, scientists studying transient phe-
nomena like salinity, temperature, or algal blooms (Leonard
et al. 2007) will almost certainly wish to specify measure-
ment times. Finally, timed destinations are important for
coordinating multiple assets such as orbital overpasses or
multiple gliders. Traditional algorithms that define destina-
tions only in terms of a physical point location are inade-
quate since gliders that arrive early may not be able to hold
position against currents.

We employ a novel “earliest valid arrival” criterion for
path planning. Here the best path minimizes travel time to
the goal region provided that the vehicle can then hold posi-
tion until entering the destination volume. This ensures the
glider will be present at the desired spatial and temporal lo-
cation. This objective is amenable to an efficient wavefront
propagation algorithm which finds the best existing solution
up to the accuracy of path discretization.

Path Planning: Algorithm
We discretize the glider’s environment using a three-
dimensional grid with two spatial dimensions indexed by x
and y, and one temporal dimension indexed by a time in-
terval τ . Each node N corresponds to a rectangular vol-
ume with an associated current prediction C. The glider
travels a path P given by a sequence of intermediate seg-
ments P = {Pi}ni=1. Valid segments travel between adja-
cent nodes in the 3D spatiotemporal grid.

Segment endpoints take specific continuous time values
in their nodes’ intervals. Therefore the glider is confined
to the physical locations represented by grid points but can



move continuously along the temporal dimension. For ex-
ample, an endpoint in Nk could have index (xk, yk, tk), for
tk ∈ τk. We explicitly permit “position holding” activities
that pause at the same physical location but move temporally
from one time interval to the next. Figure 4 illustrates a sim-
ple four-segment path through the grid. The glider begins in
the lower center and travels a path to the goal location rep-
resented by the orange node at top. The final leg of the trip
consists of a position holding action; the glider waits at the
same position until it enters the time interval of the destina-
tion node.

Figure 4: The 3D spatiotemporal grid. The glider begins in
the lower center and travels a path that visits 4 nodes before
arriving at the goal location (orange node at top). The red
squares show Axyt: the best arrival time for each node. For
clarity we omit arrival times for those nodes not participating
in the optimal path.

The path planning algorithm computes A ∈ IR for each
node; this is defined as the earliest possible time of arrival to
location (x, y) for the “hold position” action ending in time
interval τ . Often node a node directly following another at
the same physical location will take its predecessor’s value
of A due to position-holding. For example, in Figure 4 the
final segment consists of a hold position action. Physical
locations have not changed between the final two nodes so
their earliest arrival times are identical. We record only the
single best arrival time for each node in the grid.

Our path planning strategy begins with the start position
and searches for reachable neighbors in the grid. It expands
a path to these children, and continues recursively expand-
ing new nodes until it has accounted for all nodes in the grid
(Algorithm 1). We retain paths corresponding to the earliest
possible arrival time for each child, which requires storing
a single candidate “best parent” for every node. Whenever
we discover a new path to a node that arrives earlier than

the current one, we overwrite the old entries for that node’s
parent and time of arrival Axyτ . We expand new nodes
in order of increasing arrival times which requires main-
taining a sorted queue tantamount to a wavefront expansion
(Soulignac, Taillibert, and Rueher 2008) or Dijkstra method.
After completely expanding all the nodes in the grid one can
trace a valid path from any goal node back to the start using
the recorded parent nodes.

Input: Nodes N , Current predictions C, Start location
Nstart

Output: Grids of optimal parentsM and expected
arrivals

Initialize Astart ← 0, all other A ← inf
Initialize wavefront queue Q = {Nstart}
while Q not empty do

find “parent node” Np ∈ Q at xp, yp, τp minimizing
Ap

Q← Q \ Np

define “hold position destination” Nh at
(xp, yp, τp + 1)
if Nh reachable from Np then
Ah ← Ap

Mh ← Np

Q← Q ∪Nh

foreach (xc, yc) neighboring Np do
if (xc, yc) reachable from Np then

if Ap /∈ τp then
tdepart ← min t : t ∈ τp

else
tdepart ← Ap

tarrival ← tdepart+ travel time (from C)
τc = τ : tarrival ∈ τ
“child” node Nc at (xc, yc, τc)
if tarrival < Ac then
Ac ← tarrival
Mc ← Np

Q← Q ∪Nc
return A,M

Algorithm 1: Computation of arrival times and parent
nodes satisfying the “earliest valid arrival” criterion. Q
is a priority queue of unexpanded nodes maintained in
order of increasing arrival times. Subscripts p, c, h indi-
cate data associated with the current parent, child, and
station-keeping destination nodes.

The retained paths optimize an “earliest valid arrival” cri-
terion. The optimal path to a node reaches its physical desti-
nation as soon as possible provided that the vehicle can then
hold position until the appropriate node’s time interval. This
allows operators to specify goals in terms of both physical
locations and time intervals. A consequence of early arrival
is preference for short and energy-efficient paths, as well as
travel during early periods when current forecasts are most
accurate and the most time remains to compensate for un-
foreseen developments.

Algorithms 1 and 2 detail the basic procedure. Algorithm



1 uses current predictions to produce a grid of arrival times
A and path parentsM. It expands nodes in turn for activities
corresponding to station holding and physical motion. For
station keeping, the previous arrival times are preserved; for
physical motion arrival times are computed using the earliest
possible departure from the parent node. Note the use of
common subscripts p, c, h to indicate data associated with
parent, child, and station-keeping destination nodes. After
best parents have been computed for all reachable nodes,
Algorithm 2 uses this information to generate paths to any
desired destination node. A grid of approximately 100 ×
100 × 100 nodes requires about one minute of computation
time on a modern desktop processor.

Input: ParentsM, Goals {Ng}mg=1, Start location
Nstart

Output: Path P = {Pi}ni=1

P ← {Nend} for Nend minimizing Aend

while Nstart /∈ P do
Nend ←Mend

P ← P ∪Nend
return P

Algorithm 2: Computation of the optimal path from the
arrays of parent nodes and arrival times.

Note that this algorithm retains only a single parent for
each node and a single arrival time for each time interval.
This means that it expands only the path corresponding to the
earliest possible arrival at a particular node. In theory, dis-
cretization effects could make this suboptimal for the same
reason that early arrival might fail more generally. For ex-
ample, in the presence of extremely strong currents (when
holding position is impossible) postponing arrival might be
the only way to push future path segments into time inter-
vals where currents are more favorable. However, simplicity
of implementation and computational efficiency both favor
the use of a single arrival time for each node. The designer
should provide sufficiently fine temporal discretization to re-
tain all the relevant paths. This is not difficult in practice,
and temporal discretization effects were not apparent in any
of the simulations we considered.

Path Planning: Demonstration
We evaluated the path planning algorithm using a 48-hour
forecast from the Regional Ocean Modeling System, or
ROMS (Li et al. 2006; Wang et al. 2008). At this stage
the motion model presumes depth-variable currents and a
sawtooth trajectory between fixed minimum and maximum
depths. We aggregate forecasted currents at all depths into
an effective current velocity experienced by the glider pass-
ing through the node. In order to estimate travel time be-
tween neighboring nodes we compute a control propulsion
that combines with the prevailing current to yield velocity
vectors in the desired direction of travel. Specifically we de-
fine velocity 2-vectors corresponding to control propulsion
vcontrol, a constant local current with velocity Cxyτ , and a
resulting net velocity vactual. The net velocity has magni-
tude λ and follows the desired direction of travel d. We have

the relation:

vactual = vcontrol + Cxyτ = λd (1)

We compute a control to maximize the travel speed subject
to a maximum propulsion magnitude m:

λ = max |vcontrol + Cxyτ |2 S.T. |vcontrol|2 ≤ m (2)

A path between adjacent nodes is considered impossible if
the glider would require longer than a single time interval to
travel between them.

Figures 5 and 6 show two time steps drawn from a simu-
lation in which the glider travels from lower right to upper
left. The background vector field shows the predicted cur-
rents at both time steps. Colored blue and green lines show
isocontours for the arrival time values A. In Figure 5 the
glider has progressed part way along the optimal path. Note
that the glider’s start location has become unreachable due
to a surge in currents in the East side of the simulation area.

Figure 6 shows the solution path at the final simulation
time step in which the glider has reached the goal location.
A small area in the center of the map is still unreachable due
to the exceptionally strong currents in this area. The glider
cannot legally enter these gridsquares from an adjacent up-
stream location because the currents would push it beyond
to the southwest before the end of that time interval.

We evaluated the path planner using a series of random-
ized trials. A virtual ocean testbed used a ROMS forecast for
a 48-hour interval in March 2008. The simulation area cov-
ered a region spanning approximately 150km off the coast of
Los Angeles, California. The simulation grid squares mea-
sured 500m along physical axes and 1 hour in the temporal
dimension. Figures 5 and 6 demonstrate that the currents
fluctuated significantly during this period; there were some
regions of near calm and others where the current magnitude
was greater than the propulsive force of the glider. We used
a glider still-water travel speed of 0.3 meters per second.

We ran a series of trials comparing the globally-optimal
wavefront planning strategy to an alternative greedy ap-
proach using local current information. Each trial chose a
random start location from the simulation region and a ran-
dom destination within 10km of the start. We then computed
connecting paths using both strategies. The wavefront-based
path used algorithms 1 and 2 to satisfy the “earliest valid ar-
rival” criterion. The local greedy path always traveled to-
ward the neighboring grid square that was reachable and
physically as close as possible to the goal. A planning run
was deemed successful if it found a solution that reached the
goal before the 48 hour forecast had elapsed.

Table 1 shows simulation results for different start/goal
separation distances: less than 5km (561 trials), 5 to 10km
(1651 trials), and greater than 10km (683 trials). Often the
destination location was blocked by strong currents and nei-
ther method found a valid path. At other times both meth-
ods succeeded. Occasionally the destination was only ac-
cessible by exploiting time-varying currents; the wavefront
path planner succeeded while the greedy approach failed.
The path planner never underperformed the greedy method
with respect to either path validity or arrival time. The top
two rows of the table show the fraction of successful runs.
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Figure 5: Midway through a simulated run the glider has
planned a winding path to exploit currents. A red line shows
the glider’s path, while the background vector field shows
current predictions at this timestep. Blue and green isocon-
tours show reachability at representative times after the sim-
ulation start.
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Figure 6: At the end of the simulation currents have changed
significantly while the glider has reached the goal location.

0-5km 5-10km >10km
Wavefront 53.3% 50.7% 46.0%
Greedy 33.7% 33.1% 26.1%
Time difference 0.09h 0.38h 0.88h

Table 1: Percentage of trials for which greedy and global
planning methods find valid paths. Columns show perfor-
mance based on distance between the random start and goal
locations. All differences are significant to p < 1e-9. The
bottom row shows the average hours of improvement in ar-
rival time due to wavefront path planning.

Figure 7: Path length (in hours) for trials in which both
greedy and wavefront planning strategies return valid paths.
This chart includes only those trials for which both methods
find successful paths.

The wavefront method succeeds more often than the greedy
approach for all path lengths (significant to p < 1e-9 for
Fisher’s exact test).

Naturally paths that optimize the “earliest valid arrival”
criterion reach the physical goal location faster than the
greedy paths. The final row of the table in Figure 1 shows
the difference in travel times (in hours) for trials when both
methods find a valid plan. The mean over all trials is shown,
with standard deviations in parenthesis. Here the wavefront
method outperforms; it can make opportunistic detours to
exploit currents and arrive faster. Figure 7 shows a visual
comparison of travel times. The arrival time improvement
due to wavefront planning is more pronounced for longer
paths; wavefront paths arrive strictly earlier for all trials last-
ing longer than 16 hours. Note that this chart understates the
wavefront method’s benefit somewhat since it excludes the
trials for which the greedy approach fails to find a valid path.

These simulations corroborate experience that currents
dominate the glider trajectory. They underscore the impor-
tance of considering currents in mission planning, and sug-
gest that the “earliest valid arrival” criterion could provide
significant benefits.

The Detailed Plan
After the operators find a satisfactory path they convert the
activity sequence to a detailed plan that contains all the in-
formation required for execution onboard the vehicle. The
detailed plan adds additional fidelity by tracking energy re-
sources, vehicle and instrument health. In addition it speci-
fies control parameters such as the depth of each pump cycle
and the pitch of glider control surfaces. It permits simulta-
neous activities and fine control of specific payload instru-



Model Element Cartographic Detailed
Goto Waypoint Activity

destination x x
fallback destination x x
start time, duration x x
energy required x
depth x
pitch x

Communicate Activity
location x
start time, duration x x

Initialize Activity
location x x
start time, duration x x

Loiter Activity
start time, duration x

Sample Activity
start time, duration x

Failsafe Activity
start time, duration x

Vehicle Health x
Payload Health x
Battery Energy x

Figure 8: Model elements in Cartographic and Detailed
plans.

ments. Energy use is calculated using user-specified glider
flight parameters and the nominal travel time estimates pro-
vided by the path planner.

Examples of activities include:
• Initialize: Reset glider systems and behaviors to begin

the new plan.
• Go to waypoint: Travel toward a specified latitude and

longitude position. Alternatively, travel toward a fallback
waypoint after failing a start condition such as a desired
position, keepout zone, sensor reading or glider state.

• Communicate: Rise to the surface and activate the satel-
lite link to receive new instructions from the shore. Note
that communications surfacings are given a location in the
Cartographic view so that they appear in the map visu-
alization. These locations are stripped from the detailed
plan.

• Loiter: Drift passively on the current.
• Sample: Activate the CTD instrument package to record

measurements.
• Failsafe: When a serious hardware fault is detected, sur-

face to contact shore while permanently ceding vehicle
control to the survival behaviors.
Neither the cartographic path planner nor the detailed

planning stage explicitly models execution uncertainty.
However, conditional “go to waypoint” activities do add ro-
bustness in the form of “keepout zones” or fallback destina-
tions for timed waypoint sequences. The onboard executive
continually reestimates vehicle position during plan execu-
tion. If unanticipated currents push a glider off-course then it

chooses the appropriate result for these conditional activities
and thus directs the glider to safe areas. Note that position
is not tracked explicitly in the detailed plan so the plan re-
mains formally valid regardless of the glider’s physical po-
sition. This formulation places path design entirely in the
cartographic planner. It frees the detailed planning step (and
eventually the onboard executive) from considering complex
spatial dependencies like path connectivity. In any case the
onboard executive lacks up-to-date forecasts from shore so
it will not have any new information that would justify more
elaborate path revisions.

Our scheduling engine for manipulating detailed plans is
the ASPEN / CASPER software suite (Chien et al. 2000).
The ASPEN planner uses a formal model of glider state
and resources to validate the activity sequence and optimize
schedules. The model tracks depletable resources such as
battery energy, availability of the vehicle helm and commu-
nications equipment, and vehicle state variables such as the
health of the system and instruments. A timeline-based user
interface allows operators to alter any aspect of the plan and
immediately see its impact on the mission. (Figure 3). Any
resource conflicts that appear (for example, a depleted bat-
tery) will be flagged at this stage. The operator can respond
by reparameterizing the existing paths with alternative be-
haviors, or returning to the cartographic interface to edit plan
waypoint locations.

CASPER is the real-time counterpart of ASPEN; it ex-
ecutes plans and monitors the system state to ensure con-
sistency with the schedule. Our onboard architecture uses
CASPER as an executive to command a behavior-based con-
trol system. The CASPER executive activates, manages and
concludes each of the activities in the sequence, decompos-
ing them into parameters for the low-level behaviors.

The behavior-based control utilizes the MOOS-IvP sys-
tem developed at MIT CSAIL (Benjamin et al. 2009;
Eickstedt et al. 2007). MOOS-IvP provides a subscription-
based message passing service for interprocess communi-
cation onboard the vehicle. Its software modules include
processes for state estimation and telemetry. Additionally, a
helm process supplies behaviors for basic functions such as
surfacing, forward travel, and waypoint following. The helm
mediates between active behaviors by optimizing a piece-
wise linear objective function; it produces vehicle control
commands that are passed to hardware-specific glider pro-
cesses. During execution the CASPER executive modulates
the helm behaviors, activating or deactivating them and up-
dating their parameters in accordance with the schedule and
vehicle state.

Operators can validate the detailed plan by simulating the
entire mission within a copy of the MOOS-IvP environment.
Here a simulator module takes the place of the physical
glider. Operators can manually vary environmental condi-
tions during execution; for example, one could see how ad-
ditional unforeseen currents might affect the resulting glider
path. The execution stage currently uses simplified AUV
behaviors and dynamics, but it will eventually incorporate
glider-specific models.



Future Work
Future work will automate the feedback from the dynamic
simulation to earlier planning steps. Currently any anoma-
lies detected in dynamic simulations must be corrected man-
ually in the plan. For example, travel times may differ from
expectations due to current prediction errors or simplifica-
tions in the cartographic motion model. Future work will
develop a protocol to propagate these conditions back to ear-
lier planning stages. An off-nominal plan segment defines
new constraints in the form of exceptions to path segment
time estimates. These exceptions can alter travel time calcu-
lations for the next round of path planning.

The methods described in this work are part of an ongoing
effort to design and test a CyberInfastructure (CI) to support
OOI operations in the next decade (Chave et al. 2009). We
have implemented the prototype planning system and will
continue to develop and refine it during the coming year.
The system will support the upcoming Observing System
Simulation Experiment (OSSE) to test CyberInfastructure
capabilities with a simulated glider deployment. The exper-
iment will use historical forecasts for which followup mea-
surements are available. This provides a ground-truth stan-
dard to compare different mission planning methods.

Our immediate goal is to facilitate the OSSE experiment.
To this end we will incorporate a glider model into the dy-
namic simulation, along with glider-specific adaptive behav-
iors. We will develop a translation mechanism that will con-
vert glider control parameters from MOOS-IvP behaviors
into native commands for an unmodified glider platform.
This will allow physical gliders to operate from the current-
sensitive plans generated in advance by the simulation. Later
stages of development will port the execution architectures
to the physical glider, permitting true autonomous plan per-
secution and monitoring within the OOI network.
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Pêtrès, C.; Pailhas, Y.; Patrón, P.; Petillot, Y.; Evans,
J.; and Lane, D. April 2007. Path planning for au-
tonomous underwater vehicles. IEEE Transactions on
Robotics 23(2):331—341.
Schofield, O.; Kohut, J.; Aragon, D.; Creed, L.; Graver, J.;
Haldeman, C.; Kerfoot, J.; Roarty, H.; Jones, C.; Webb,
D.; and Glenn, S. 2007. Slocum gliders: Robust and ready.
Journal of Field Robotics 24:6:473–485.
Soulignac, M.; Taillibert, P.; and Rueher, M. 2008. Adapt-
ing the wavefront expansion in presence of strong currents.
International Conference on Robotics and Automation.
Soulignac, M.; Talilibert, P.; and Rueher, M. 2009. Time-
minimal path planning in dynamic current fields. Interna-
tional Conference on Robotics and Automation.
Wang, X.; Chao, Y.; Dong, C.; Farrara, J.; Li, Z.;
McWilliams, J. C.; Paduan, J. D.; and Rosenfeld, L. K.
2008. Modeling tides in Monterey Bay, California. Else-
vier.
Zhang, W.; Inanc, T.; Ober-Blöbaum, S.; and Mardesn,
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