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Introduction
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Carbon Flux Mismatch

Balance of sources and sinks
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Figure 2: globalcarbonproject.org/carbonbudget/index.htm
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Carbon Flux Inversion
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The Orbiting Carbon Observatory 2 (0CO-2) Instrument
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The Orbiting Carbon Observatory 2 (0CO-2) Instrument

Measured radiances are
used to infer
atmospheric CO4
concentrations.
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Atmospheric Retrieval

The OCO-2 mission uses Optimal Estimation (Rodgers, 2000). The
relationship between atmospheric state vector x and radiance vector
y is modeled as

y=F(x,b)+e, Xx~N(XqSq), €~ N(0,S). (1)

The atmospheric state is then inferred by solving the corresponding
inverse problem:

X = argmin [y — F(x, )] S, [y — F(x,b)] + [x = Xa] 'Sz [x = Xd] . (2)
X
The operational retrieval also provides an estimate for the posterior

covariance:
=~ =il
S=(K'S;'K+5S;1) . (3)
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Ground Measurement: TCCON
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Outstanding Issues for 0CO-2

-Retrievals take significant computational effort. (Re-)Processing the
entire OCO-2 data record takes more than a year.

-OE doesn't provide trustworthy uncertainty estimates. Posterior
distribution might be non-Gaussian, overall estimate is generally too
low. Error sources outside retrieval algorithm are not included.

-XCO2 estimates are biased. Bias correction needed after inital
processing.
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Towards Solutions

-Direct retrievals using neural -MCMC aided by surrogate
networks (David et al. [2021], forward model. (Lamminpaa et
Bréon et al [2022]) offer a fast al. [2019] for exploring the
means to going to XCO2 directly non-Gaussian posterior.

from input radiances. -Simulation Based UQ

(Braverman et al. [2021])
simultaneously tackles bias and
non-Gaussianity.

Figure 5: Image from David et al.

Figure 6: Left: Lamminpaa et al,
Right: Braverman et al.
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Results

Diff TCCON vs GMI Diff TCCON vs OE
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Gaussian Mixture Inversion



Modeling a Non-Linear Function u
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Gaussian Mixture Model: Joint Distribution
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Gaussian Mixture Model: Conditional Distribution
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GMM Posterior As A Solution To Inverse Problem

A Bayesian solution to an non-linear inverse problem of solving for x
iny = F(x) + ¢ is given by

p(x]y) o< p(yIxX)p(x). (10)

Instead of gradient-based solutions, we propose Gaussian Mixture
Inversion (GMI): given x ~ p(x) and y = F(x) + ¢, the posterior density
will be approximated as

R
po) = 3=t .4 (m

defined as before.
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Test cases

Benchmark solution: Adaptive Metropolis (AM). Sample points x4
from a proposal distribution N(x, C;), where C; is the covariance
matrix of the chain at time t:

Ce = cov([xq, ..., xi]), (12)

accept new point with probability

(X, Xeq1) = min (1, 7:(:22)1)) (13)

Further, we observe

E" [dHell (7T<'|Y>77TN("Y))2} < 2 (dpeu(m (-, ), (-, In)? + dpeu(my, mv,)?)
(14)
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1D Toy Example

We validate our approach to posterior approximation by considering
the following two synthetic example. Let

XeR, y=fx)+eeR, f(x)=sin(2x)— cos(3x) (15)
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Figure 8: Test case where true x = -0.4
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2D Toy Example

Next, consider
XER? y=f(x)+ecR, f(x)=sin(x;)— cos(xz) (16)
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Application to 0CO-2




Example Using Simulated OCO-2 Data

- Retrieval for a single pixel. Quantity of interest: column
averaged CO2 concentration, denoted XCO?2.

- State vector x with realistic atmospheric and surface conditions.

- Simulated measurement: forward model evaluated at x, add
synthetic measurement error.

- Radiance dimension reduction using PCA.

- Compare GMI and MCMC posteriors (with and without "model
discrepancy”, using a forward model emulator. See talk by Jouni
Susiluoto, MS157, on Thursday!).
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Training data

y=Fxb)+e+4 (17)

- x: operational prior, combination of priors, more comprehensive
local / global distribution.

- b: forward model parameter uncertainty included by prescribing
a distribution.

- & error model, possibility of off-diagonal elements in
covariance, can be non-Gaussian.

- 0: model discrepancy for including model misspecification, can
include new ML bias-correction, other methods for accounting
"Unknown Unknowns” and spectral residuals.
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Model Discrepancy Adjustment

To test performance with more realistic data, we perturb modeled
radiances with model discrepancy adjustment:

y:F1(X,b1)+€+5, 5:F0(X7b0)7F1(X,b1). (18)
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Left: 02-A Band radiance. Middle: a realization of measurement error
e ~ N(0,Sy). Right: a realization of model discrepancy § ~ N (ps, S5)-
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Example Using Simulated OCO-2 Data

I AM
1.5 F C—Gmm
True
Retrieved
1.0
0.5
0.0 -
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XCO2 [ppm]

(Without model discrepancy: Yops = F(X) + ¢)

Jet Propulsion Laboratory
@ California Institute of Technology 2 /34



Full posterior
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Example Using Simulated OCO-2 Data

[ AM
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(With Model Discrepancy: Yops = F(X) + & + 6)

Jet Propulsion Laboratory
@ California Institute of Technology 24/34



Full posterior, with model discrepancy
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- 10000 state vectors sampled from prior; input to forward model
(emulator); added noise.
Time: 104s (parallel in DGX station with 20 threads).

- Traned GMM with Julia’s GaussianMixtures package: 100
iterations for learning, 20 mixture components.
Time: 44s.

- Condition on measured radiance; sample 10000 realizations
from conditional distribution.
Time: 0.014s.

- Adaptive Metropolis ran for 1000000 iterations.
Time: approx. 17000s, or 4.5h (using emulator).

Jet Propulsion Laboratory
@ California Institute of Technology 26/34



Example Using Real Data

- Training data: partition the Globe into clusters according to real
0CO-2 measurements via self-organizing maps. For each cluster,
derive marginal distribution on x and §. Obtain
y=F(x,b) +e+4.

- Evaluate model performance against operational retrieval by

left-out simulated data, and TCCON co-located real world
retrievals of XCO2.
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Comparison with Left-Out Data
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Comparison with Real Data
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Include Model Discrepancy and Prior Mean In Training
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Comparison with Real Data (Revisited)
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Remark: Averaging Kernels?

A= (S;'+K'S7TK)TIKTSSTK
SK'S 'K
S(K'SZ'K+S.1 = Sh)
=567 -5

=557t -5t

=1 -5s;1

(19)
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Further work

- Wasserstein loss and cross-validation to fit GMM.

- Fitting/learning the mixture model with e.g. mixture density
networks. Different basis functions, e.g. Cauchy.

- Dimension reduction for data using Autoencoders, UMAP.

- Other methods with similar capabilities: Deep Ensemble
methods, VAEs, GAN-FLOW.
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