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Introduction



Terrestrial Carbon Cycle

Figure 1: NASA/JPL
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Carbon Flux Mismatch

Figure 2: globalcarbonproject.org/carbonbudget/index.htm
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Carbon Flux Inversion

Figure 3: NASA/JPL
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The Orbiting Carbon Observatory 2 (OCO-2) Instrument

Figure 4: NASA/JPL 5/34



The Orbiting Carbon Observatory 2 (OCO-2) Instrument

Measured radiances are
used to infer
atmospheric CO2

concentrations.
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Atmospheric Retrieval

The OCO-2 mission uses Optimal Estimation (Rodgers, 2000). The
relationship between atmospheric state vector x and radiance vector
y is modeled as

y = F(x,b) + ε, x ∼ N(xa, Sa), ε ∼ N(0, Sy). (1)

The atmospheric state is then inferred by solving the corresponding
inverse problem:

x̂ = argmin
x

[y− F(x,b)]T S−1
y [y− F(x,b)] + [x− xa]T S−1

a [x− xa] . (2)

The operational retrieval also provides an estimate for the posterior
covariance:

Ŝ =
(
KTS−1

y K+ S−1
a

)−1
. (3)
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Ground Measurement: TCCON
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Outstanding Issues for OCO-2

-Retrievals take significant computational effort. (Re-)Processing the
entire OCO-2 data record takes more than a year.

-OE doesn’t provide trustworthy uncertainty estimates. Posterior
distribution might be non-Gaussian, overall estimate is generally too
low. Error sources outside retrieval algorithm are not included.

-XCO2 estimates are biased. Bias correction needed after inital
processing.
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Towards Solutions

-Direct retrievals using neural
networks (David et al. [2021],
Bréon et al [2022]) offer a fast
means to going to XCO2 directly
from input radiances.

Figure 5: Image from David et al.

-MCMC aided by surrogate
forward model. (Lamminpää et
al. [2019] for exploring the
non-Gaussian posterior.
-Simulation Based UQ
(Braverman et al. [2021])
simultaneously tackles bias and
non-Gaussianity.

Figure 6: Left: Lamminpää et al.,
Right: Braverman et al.
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Results
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Gaussian Mixture Inversion



Modeling a Non-Linear Function u = f(w)

Figure 7: Image from Braverman et al. [2021]
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Gaussian Mixture Model: Joint Distribution

p(y, x) = p(z) =
K∑

k=1

π(k)ϕ(z;µ(k),Σ(k)) (4)

z =
[
y
x

]
, Σ(k) =

[
Σ

(k)
yy Σ

(k)
yx

Σ
(k)
xy Σ

(k)
xx

]
(5)
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Gaussian Mixture Model: Conditional Distribution

p(x|y) =
K∑

k=1

π
(k)
x|y ϕ(x;µ

(k)
x|y ,Σ

(k)
x|y ) (6)

π
(k)
x|y =

π(k)ϕ(y;µ(k)
y ,Σ

(k)
yy )∑K

l=1 π
(l)ϕ(y;µ(l)

y ,Σ
(l)
yy )

(7)

µ
(k)
x|y = µ

(k)
x +Σ

(k)
xy

(
Σ

(k)
yy

)−1 [
y− µ

(k)
y

]
(8)

Σ
(k)
x|y = Σ

(k)
xx − Σ

(k)
xy

(
Σ

(k)
yy

)−1

Σ
(k)
yx (9)
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GMM Posterior As A Solution To Inverse Problem

A Bayesian solution to an non-linear inverse problem of solving for x
in y = F(x) + ε is given by

p(x|y) ∝ p(y|x)p(x). (10)

Instead of gradient-based solutions, we propose Gaussian Mixture
Inversion (GMI): given x ∼ p(x) and y = F(x) + ε, the posterior density
will be approximated as

p̃(x|y) =
K∑

k=1

π
(k)
x|y ϕ(x;µ

(k)
x|y ,Σ

(k)
x|y ) (11)

defined as before.
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Test cases

Benchmark solution: Adaptive Metropolis (AM). Sample points xt+1

from a proposal distribution N(xt, Ct), where Ct is the covariance
matrix of the chain at time t:

Ct = cov([x1, . . . , xt]), (12)

accept new point with probability

α(xt, xt+1) = min
(
1,

π(xt+1)

π(xt)

)
(13)

Further, we observe

EY
[
dHell (π(·|Y), πN(·|Y))2

]
≤ 2

(
dHell(π(·, ·), π(·, ·)N)2 + dHell(πY, πYN)2

)
(14)
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1D Toy Example

We validate our approach to posterior approximation by considering
the following two synthetic example. Let

x ∈ R, y = f(x) + ε ∈ R, f(x) = sin(2x)− cos(3x) (15)

Figure 8: Test case where true x = -0.4

17/34



2D Toy Example

Next, consider

x ∈ R2, y = f(x) + ε ∈ R, f(x) = sin(x1)− cos(x2) (16)

Figure 9: Test case where true x = (-0.2,-0.2)
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Application to OCO-2



Example Using Simulated OCO-2 Data

• Retrieval for a single pixel. Quantity of interest: column
averaged CO2 concentration, denoted XCO2.

• State vector x with realistic atmospheric and surface conditions.
• Simulated measurement: forward model evaluated at x, add
synthetic measurement error.

• Radiance dimension reduction using PCA.
• Compare GMI and MCMC posteriors (with and without ”model
discrepancy”, using a forward model emulator. See talk by Jouni
Susiluoto, MS157, on Thursday!).
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Training data

y = F(x,b) + ε+ δ (17)

• x: operational prior, combination of priors, more comprehensive
local / global distribution.

• b: forward model parameter uncertainty included by prescribing
a distribution.

• ε: error model, possibility of off-diagonal elements in
covariance, can be non-Gaussian.

• δ: model discrepancy for including model misspecification, can
include new ML bias-correction, other methods for accounting
”Unknown Unknowns” and spectral residuals.
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Model Discrepancy Adjustment

To test performance with more realistic data, we perturb modeled
radiances with model discrepancy adjustment:

y = F1(x,b1) + ε+ δ, δ = F0(x,b0)− F1(x,b1). (18)

Left: O2-A Band radiance. Middle: a realization of measurement error
ε ∼ N (0, Sy). Right: a realization of model discrepancy δ ∼ N (µδ, Sδ).
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Example Using Simulated OCO-2 Data

(Without model discrepancy: yobs = F(x) + ε)
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Full posterior

23/34



Example Using Simulated OCO-2 Data

(With Model Discrepancy: yobs = F(x) + ε+ δ)
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Full posterior, with model discrepancy
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Timing

• 10000 state vectors sampled from prior; input to forward model
(emulator); added noise.
Time: 104s (parallel in DGX station with 20 threads).

• Traned GMM with Julia’s GaussianMixtures package: 100
iterations for learning, 20 mixture components.
Time: 44s.

• Condition on measured radiance; sample 10000 realizations
from conditional distribution.
Time: 0.014s.

• Adaptive Metropolis ran for 1000000 iterations.
Time: approx. 17000s, or 4.5h (using emulator).
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Example Using Real Data

• Training data: partition the Globe into clusters according to real
OCO-2 measurements via self-organizing maps. For each cluster,
derive marginal distribution on x and δ. Obtain
y = F(x,b) + ε+ δ.

• Evaluate model performance against operational retrieval by
left-out simulated data, and TCCON co-located real world
retrievals of XCO2.
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Comparison with Left-Out Data
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Comparison with Real Data
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Include Model Discrepancy and Prior Mean In Training
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Comparison with Real Data (Revisited)
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Remark: Averaging Kernels?

A = (S−1
a + KTS−1

ε K)−1KTS−1
ε K

= ŜKTS−1
ε K

= Ŝ(KTS−1
ε K+ S−1

a − S−1
a )

= Ŝ(Ŝ−1 − S−1
a )

= ŜŜ−1 − ŜS−1
a

= I− ŜS−1
a

(19)
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Further work

• Wasserstein loss and cross-validation to fit GMM.
• Fitting/learning the mixture model with e.g. mixture density
networks. Different basis functions, e.g. Cauchy.

• Dimension reduction for data using Autoencoders, UMAP.
• Other methods with similar capabilities: Deep Ensemble
methods, VAEs, GAN-FLOW.
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Thank you!
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