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Abstract

With the development of new remote sensing technology, large or even massive
spatial datasets covering the globe become available. Statistical analysis of such data
is challenging. This article proposes a semiparametric approach to model large or
massive spatial datasets. In particular, a Gaussian process with additive components
is proposed, with its covariance structure consisting of two components: one compo-
nent is flexible without assuming a specific parametric covariance function but is able
to achieve dimension reduction; the other is parametric and simultaneously induces
sparsity. The inference algorithm for parameter estimation and spatial prediction is
devised. The resulting spatial prediction methodology that we call fused Gaussian pro-
cess (FGP), is applied to simulated data and a massive satellite dataset. The results
demonstrate the computational and inferential benefits of FGP over competing meth-
ods and show that FGP is robust against model misspecification and captures spatial
nonstationarity. The supplemental materials are available online.
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1 Introduction

With the advances of remote sensing technologies, massive scientific data can be collected

over (a proportion of) the globe. Such spatially correlated datasets allow researchers to inves-

tigate various issues in environmental and atmospheric sciences. Classic statistical methods

such as kriging have been widely used to model spatial data (Cressie 1993; Cressie and

Wikle 2011; Banerjee et al. 2014). However, with large or massive data, direct implemen-

tation of these statistical methods becomes computationally prohibitive, since solving the

kriging equations involves the Cholesky factorization of an n× n covariance matrix for data

of size n, which requires computational cost O(n3) and memory cost O(n2) in general.

To tackle these issues, many recent developments in spatial statistics have focused on

modeling large or massive spatial datasets. Most of them assume a specific form for the

spatial covariance function known up to several parameters, e.g., the Matérn family, and

then use different approaches to represent or approximate the target function, the resulting

covariance or precision matrix, or the likelihood function. Methods in this paradigm include

but are not limited to approximate likelihood (e.g., Stein et al. 2004; Caragea and Smith

2006), covariance tapering (Furrer et al. 2006; Kaufman et al. 2008), predictive process

(Banerjee et al. 2008) and its variants Sang and Huang (2012), composite likelihood (Lindsay

1988; Eidsvik et al. 2014), nearest-neighbor Gaussian process (Datta et al. 2016), Gaussian

Markov random field representation (Lindgren et al. 2011), a multi-resolution approximation

for Gaussian process (Katzfuss 2017), and spectral methods (Guinness and Fuentes 2017).

While the richness and flexibility of the methods mentioned above are indisputable, their

implementation and performance generally rely on the assumption of a particular parametric

form for the spatial covariance function. One of the main difficulties in using these methods

to analyze massive data observed on a very large spatial domain such as the globe is to

choose a specific covariance function that can represent various spatial structures in data,

since misspecification of the spatial covariance function can have a large impact on inferen-
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tial efficacy. Therefore, a family of covariance functions that are more flexible and robust

is more desirable. Some extensions of the aforementioned methods to construct complex

spatial processes have been proposed as well. For instance, by specifying a nonstationary

Matérn covariance function in Paciorek and Schervish (2006), random spatial basis functions

are obtained through a reversible-jump Markov chain Monte Carlo algorithm in Katzfuss

(2013), which can increase the flexibility of the resulting spatial process constructed from

the predictive process. Another flexible and nonstationary covariance function is developed

by adaptively partitioning the spatial domain through a Bayesian treed Gaussian process

in Konomi et al. (2014) and Konomi et al. (2019). However, these extensions in general

result in much more complicated algorithms, and the resulting computational cost can be

too demanding for massive spatial data sets.

A second avenue of recent research has been focused on semiparametric models for an-

alyzing large or massive spatial data sets. Methods in this paradigm represent a spatial

process as a linear combination of multiresolutional basis functions and random coefficients

(e.g., Cressie and Johannesson 2006, 2008; Chu et al. 2014). Specifically, a flexible family of

nonstationary spatial covariance functions is developed in Cressie and Johannesson (2008)

based on a pre-specified multiresolutional and compactly supported basis functions and a

general low-rank covariance matrix. This model and resluting method is called fixed rank

kriging (FRK) in Cressie and Johannesson (2008). Based on a novel local Karhunen-Loève

expansion for an underlying spatial process, another type of flexible and unspecified spatial

covariance functions is proposed in Chu et al. (2014), where the consistency conditions for

parameter estimators in the covariance function are established to estimate a general co-

variance matrix. However, these semiparametric models have their own limitations. The

FRK model incorporates a small number of basis functions to model a spatial process. The

resulting low-rank covariance function allows fast computations but may also incur sacrifices

in capturing the spatial structures at various scales presented in data (e.g., Stein 2014). Chu

et al. (2014) partition the spatial domain into identically shaped subdomains and assume
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independence among different subdomains, but the resulting loss of accuracy needs to be

recovered by other approaches in practice such as tapering approximation. Instead of using

a low-rank structure, Nychka et al. (2015) propose a model called Lattice Krig in which

they use a large number basis functions from multiple resolutions. It is then assumed that

random effects corresponding to different resolutions are independent, while random effects

from the same resolution follow a Gaussian Markov random field (GMRF) using the result

in Lindgren et al. (2011) that this particular GMRF model is explicitly connected to the

Matérn covariance family. Nychka et al. (2015) focus primarily on presenting how well Lat-

tice Krig approximates a stationary covariance function but without simulation results to

illustrate its predictive performance when the true covariance is nonstationary or when the

parametric form of a covariance function is unknown a priori.

Motivated by the full-scale approximation in Sang and Huang (2012) that the covariance

matrix is written as a sum of a low-rank matrix and a tapered covariance matrix, our method

also represents the covariance matrix as a sum of two components. Different from Sang and

Huang (2012), we do not need to have a prespecified form for the covariance function of

a spatial process. Our work combines the advantages of methods from both parametric

and semiparametric paradigms. In particular, a spatial process is constructed with additive

components, which have two different types of basis representations based on a set of inducing

variables. The first component is characterized through a semiparametric representation with

a relatively small number of basis functions and a general unspecified form of covariance

matrix in the same way as in Cressie and Johannesson (2008). This low-rank component is

able to model nonstationary covariance structures. The second component in the covariance

structure is defined through a Gaussian graphical model (GGM), also called Gaussian Markov

random field in spatial statistics. We will demonstrate that several state-of-the-art methods

for parametric covariance approximation can be viewed as special cases of the GGM under

various assumptions. The resulting method is called the fused Gaussian process (FGP) as

it blends two components in its covariance function that induces a low-rank matrix and
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a sparse precision matrix. Unlike the full-scale approximation in Sang and Huang (2012)

that two components of covariance structures are used together to approximate a target

covariance function specified a priori, the low-rank and GGM components in the FGP do

not require pre-specification of a particular parametric covariance. By taking advantage

of the properties from both components, we develop a computationally efficient algorithm

for parameter estimation and spatial prediction. The superior performance of the proposed

approach is demonstrated through simulation studies and a massive satellite dataset.

The remainder of the paper is organized as follows. Section 2 presents the semiparametric

statistical model and discusses about relevant model specification. In Section 3, likelihood-

based inference including parameter estimation and spatial prediction is devised for the FGP.

Section 4 uses simulation examples to demonstrate the robustness of predictive performance

and nonstationary performance of the FGP. In Section 5, the FGP is applied to a massive sea

surface temperature dataset from NASA’s Terra and Aqua satellites. Section 6 is concluded

with a brief summary and discussion on possible extensions.

2 A Fused Gaussian Process Model

This section starts with the definition of a fused Gaussian process (FGP) and then discusses

its properties and relationship with other state-of-the-art methods.

2.1 Model Specification

Suppose we are interested in a hidden real-valued spatial process {Y (s) : s ∈ D ⊂ Rd}

in the spatial domain D. Statistical inferences are made upon the observed data Z ≡

(Z(s1), . . . , Z(sn))′ with measurement error incorporated:

Z(s) = Y (s) + ε(s), s ∈ D, (2.1)
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where ε(·) is a Gaussian white noise with mean zero and variance σ2
ε v(·). The quantity

v(·) is known from validation data or instrument specification and allows the possibility of

nonconstant measurement-error variances. The variance parameter σ2
ε can also be inferred

from validation data (e.g., Cressie and Johannesson 2006, 2008; Nguyen et al. 2012). If it is

unknown, it will be estimated in practice. To model the hidden process Y (·), we assume the

following structure,

Y (s) = µ(s) + ν(s), s ∈ D, (2.2)

where µ(·) models the trend. In the remainder of this paper, we assume that µ(·) = X(·)′β

with a vector of known covariates X(·) = (X1(·), . . . , Xp(·))′ and corresponding unknown

coefficients β. A zero-mean Gaussian process is assumed for the second term ν(·) in (2.2)

with a covariance function C(·, ·). Instead of specifying C(·, ·) directly, ν(·) is assumed to be

induced by two independent random vectors: a low-dimensional vector η ≡ (η1, . . . , ηr)
′ of

size r (r � n) and a high-dimensional vector ξ ≡ (ξ1, . . . , ξM)′ of size M (M ≈ n or M > n):

ν(s) =
r∑
i=1

Si(s)ηi +
M∑
j=1

Aj(s)ξj ≡ S(s)′η + A(s)′ξ, (2.3)

where S(·) ≡ (S1(·), . . . , Sr(·))′ and A(·) ≡ (A1(·), . . . , AM(·))′ are two sets of basis functions

associated with η and ξ, respectively. S(·)′η is called low-rank component, and A(·)′ξ is

called Gaussian-graphical-model component. Their model specifications are presented below,

respectively.

Low-rank Component S(·)′η

The r-dimensional vector η is assumed to be a Gaussian random vector with zero mean

and an unknown r × r covariance matrix K. The associated r basis functions S(·) are fixed

and known. Such a low-rank component via a basis expansion has been widely used to ana-

lyze large spatial data sets. Various forms of basis functions have been suggested, including

local bisquare functions (Cressie and Johannesson 2008), wavelets (Shi and Cressie 2007),

cubic B-splines (Chu et al. 2014), and basis functions resulted from a prespecified parametric

6



covariance function and a set of prespecified locations or knots (Banerjee et al. 2008), among

the others. In addition to prespecify basis functions, numerical methods for Karhunen-Loève

(K-L) expansion have been developed to calculate eigenfunctions, which can be used as basis

functions as suggested in Hu (2013). Recently, Bradley et al. (2016) point out that any

class of basis functions can be re-weighted and then viewed as eigenfunctions within a K-L

expansion, although sensitivity analysis is recommended to choose basis functions. Here,

we choose multiresolutional and compactly supported basis functions for S(·) as suggested

in Cressie and Johannesson (2008). As demonstrated in previous works, incorporating a

low-rank basis expansion enables dimension reduction, and thus is able to facilitate compu-

tationally feasible inference. Further discussion of the relationship and differences between

our model and other models is given in the end of this section.

Gaussian-graphical-model component A(·)′ξ

The M -dimensional vector ξ is assumed to be a Gaussian random vector with zero mean

and nonsingular covariance matrix Σ. Suppose that Q ≡ Σ−1 = (qij) denotes the cor-

responding precision matrix with (i, j)-th element qij. Then the Gaussian random vector

ξ can be represented by an undirected Gaussian graphical model via an undirected graph

G = (V , E), where V contains the M vertices corresponding to the variables in ξ, and the

edges E = (eij)1≤i<j≤M indicate whether the variables ξi and ξj (i 6= j) are conditionally

independent given all other variables in ξ. Therefore, the variables in ξ are Markov with

respect to G:

p(ξi|{ξj : j 6= i}) = p(ξi|{ξj : j ∈ Ni}),

where p(·) represents the probability density function; Ni ≡ {j|j ∈ V , and {i, j} ∈ E}, and

elements in the precision matrix Q are non-zero only for neighbors and diagonal elements:

qij = 0 ⇐⇒ j /∈ Ni and i 6= j. In spatial statistics, an uGGM is also called Gaussian

Markov random field (e.g., Rue and Held 2005). Note that it is also possible to define a

directed GGM (dGGM) for ξ. However, since a dGGM can be converted to an uGGM via
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moralization (i.e., “marriage” of a child node’s parent nodes) (e.g., Jordan 2003), an uGGM

for ξ is assumed in all numerical examples in this article.

The precision matrix Q plays an important role in determining the dependence struc-

ture in ξ and is usually modeled as a large structured sparse matrix, known up to a few

parameters. For example, an explicit parametric form for Q is provided in Lindgren et al.

(2011) when a Matérn covariance function is assumed. Another commonly used approach is

to assume a conditional autoregressive (CAR) structure (Cressie and Wikle 2011, sec. 4.2).

The covariance matrix of ξ in a CAR model takes the form: Σ ≡ τ 2(I−γH)−1∆, or equiva-

lently, Q ≡ τ−2∆−1(I− γH). Here the parameter γ is interpreted as the strength of spatial

dependence, while τ 2 > 0 is a scale parameter; H ≡ (hij) is a known M ×M matrix with

zero diagonal elements; ∆ ≡ diag(∆1, . . . ,∆M) is a known M ×M diagonal matrix with

positive diagonal elements. Meanwhile, to ensure that Q = τ−2∆−1(I − γH) is symmet-

ric and positive-definite, the parameter γ needs to be restricted between the reciprocal of

smallest and largest eigenvalues of H (e.g., Besag (1974)). This CAR model on ξ implies

the following conditional distributions,

ξi|ξ−i ∼ N

(
γ

M∑
j=1

hijξj, τ
2∆i

)
, i = 1, . . . ,M, (2.4)

where ξ−i ≡ (ξ1, . . . , ξi−1, ξi+1, . . . , ξM)′. Notice that when γ = 0, ξ ∼ NM(0, τ 2∆), which

results in independence for {ξi : i = 1, . . . ,M}.

Suppose that the random vector ξ is defined on a generic lattice over the domain of in-

terest, D ≡ ∪{Ri : i = 1, . . . ,M}, where the M small areal regions {Ri} are nonoverlapping,

and called basic areal units (BAUs). To specify the basis functions A(·) ≡ (A1(·), . . . , AM(·))′,

we define Ai(Rj) to be 1 if i = j and zero otherwise. This discretization procedure is typically

determined by the resolution of data so that each observation location is contained in one

small areal region. The matrices H and ∆ are also specified according to the neighborhood

structure in the lattice. In the following numerical examples, H is constructed from first

order neighborhood structure, and ∆ is chosen to be the identity matrix. In practice, {Ri}
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can be determined by the finest resolution for which spatial predictions will be made, and

choice of neighborhood structure can be made based on model selection criteria such as cross-

validation or Bayesian information criterion. We assume that the observed data are obtained

at the same or a coarser spatial resolution compared to the lattice {Ri : i = 1, . . . ,M}, and

thus M can be much larger than the size of the data n. Such a lattice structure has been

introduced and utilized to analyze remote-sensing data in previous studies (e.g, Nguyen et al.

2012).

The resulting model for the hidden process Y (s) is given by:

Y (s) = X(s)′β + S(s)′η + A(s)′ξ, (2.5)

which is called the fused Gaussian process (FGP), since it combines the low-rank and

graphical-model components. Notice that the covariance matrix obtained from Y (·) at a

finite collection of spatial locations has a fixed rank no more than M . The FGP methodol-

ogy can also be viewed as a fixed rank kriging methodology.

2.2 Connection with Several Existing Methods

We include in this section remarks to compare the FGP with several models in literature for

analyzing large or massive spatial data. The model in (2.5) contains a low-rank component

similar to that in Cressie and Johannesson (2008). As pointed out in later work (e.g., Stein

2014), the performance of low-rank methods can be sensitive to the number of basis functions.

In Section 4, we compare the predictive performance of FGP with FRK, and show that by

introducing the GGM component, FGP is able to provide more accurate spatial predictions

even with a fewer number of basis functions in the low-rank component than FRK does.

It is worth noting that three other recently suggested methods for massive spatial data,

the nearest-neighbor Gaussian process (NNGP) model in Datta et al. (2016), the multi-

resoution approximation (MRA) model in Katzfuss (2017), and Lattice Krig in Nychka
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et al. (2015) can all be considered as models induced from a GGM component. In particular,

NNGP is induced by a directed Gaussian graphical model with vertices related to locations

in a pre-specified reference set, while MRA is built based on a multi-resolution Gaussian

graphical model but has assumed independence between vertices from different resolutions

and vertices from different clusters (or regions) within the same resolution. Similarly, in

Lattice Krig, when we treat all grid cells as vertices in a graph, the model for random effects

in Lattice Krig can be viewed as a Gaussian graphical model. In FGP, it is also possible

to include a GGM component as those in NNGP, MRA, or Lattice Krig, especially when a

specific target parametric covariance function is desired. Therefore, NNGP, MRA and Lattice

Krig can be viewed as alternative parameterization for the GGM component in FGP, and the

inference procedure and related computational advantages we present in Section 3 will still

hold. Many methods have been proposed recently to tackle the big “n” problem in spatial

statistics (e.g., Sang and Huang 2012; Nychka et al. 2015; Datta et al. 2016; Katzfuss 2017).

The FGP model is another competing method to tackle this computational problem, and at

the same time FGP can model nonstationary spatial processes.

3 Inference

This section details the inference procedure for parameter estimation and spatial predictions

with FGP (Section 3.1) and discusses the associated computational complexity (Section 3.2).

3.1 Parameter Estimation and Spatial Prediction

Let θ denote the vector consisting of parameters in {β,K, τ 2, γ}. Recall that the observed

data is Z ≡ (Z(s1), . . . , Z(sn))′. By combining (2.1) and (2.5) and assembling vectors into

matrices, the spatial linear mixed effects model for Z can be written as the following matrix

10



form:

Z = Xβ + Sη + Aξ + ε,

where X ≡ [X(s1), . . . ,X(sn)]′ is the n × p matrix corresponding to the fixed effects β;

S ≡ [S(s1), . . . ,S(sn)]′ is the n × r matrix related to r-dimensional random vector η in

the low-rank component; A ≡ [A(s1), . . . ,A(sn)]′ is the n ×M matrix related to the M -

dimensional vector ξ in the uGGM component. Up to an additive constant, the negative

log-likelihood function is written as:

lZ(θ) =
1

2
{(Z−Xβ)′C−1(Z−Xβ) + log |C|}+ constant,

where C ≡ var(Z) = SKS′+AQ−1A′+Vε with Vε = diag(σ2
ε v(s1), . . . , σ

2
ε v(sn)). Evaluation

of the negative log-likelihood function requires calculation of the inverse and log-determinant

of the n× n matrix C, and it can be obtained efficiently using results in Proposition 1.

Proposition 1. Recall that C ≡ var(Z) = SKS′ + AQ−1A′ + Vε, it follows that:

C−1 = D−DS(K−1 + S′DS)−1S′D, (3.1)

log |C| = log |K−1 + S′DS|+ log |K|+ log |D−1|, (3.2)

where D ≡ (AQ−1A′ + Vε)
−1 = V−1ε − V−1ε A(Q + A′V−1ε A)−1A′V−1ε , and log |D−1| =

log |Q + A′V−1ε A| − log |Q|+ log |Vε|.

Proof of Proposition 1 can be found in Appendix E. Note that the right-hand sides of

(3.1) and (3.2) involve only inversion and determinant of r × r matrices and M ×M sparse

matrices, which enable fast evaluation of the negative log-likelihood.

To minimize the negative log-likelihood function lZ(θ), iterative algorithms are devised.

For example, as suggested in Chu et al. (2014), the matrix K is parametrized via its eigen-

decomposition and then a two-step iterative algorithm can be carried out. Their theoretical

results show that the parameters can be estimated consistently under certain regularity con-

ditions. First, lZ(θ) is minimized with respect to the eigenvectors of K for a fixed (β, τ 2, γ)
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using a Newton-Raphson-type algorithm on a Stiefel manifold (Peng and Paul 2009). Second,

with fixed eigenvectors of K, lZ(θ) is minimized with respect to the remaining parameters.

Another technique to minimize lZ(θ) is to treat random effects as “missing data”, and the

expectation-maximization (EM) algorithm (Dempster et al. 1977) can be implemented. To

devise the EM algorithm for the FGP, the random vector η is treated as “missing data”. Let

θt denote the parameters at the t-th iteration. In the expectation step (E-step), the condi-

tional expectations and covariance matrix for η given the data Z and parameter estimates

θt are derived, respectively:

µη|Z,θt
= E(η|Z,θt) = KtS

′C−1t (Z−Xβt) and Ση|Z,θt = Var(η|Z,θt) = Kt −KtS
′C−1t SK′t,

where Ct ≡ SKtS
′ + AQ−1t A′ + Vε, and Qt ≡ ∆−1(I− γtH)/τ 2t . In the maximization step

(M-step), θt+1 is updated by maximizing the so-called Q function obtained in the E-step.

In particular, closed-form updates can be derived for K and β, and numerical optimization

procedures such as interior point method and active-set method (e.g., Byrd et al. 1999), are

implemented to update τ 2 and γ. Complete derivation of the EM algorithm for the FGP

is included in Appendix F as well as recommendations about initial values and convergence

criteria.

For spatial prediction, suppose that we are interested in making prediction of Y (·) at

a set of locations {sPi }mi=1 ⊂ D based on observed data Z. Let YP ≡ (Y (sP1 ), . . . , Y (sPm))′.

Define XP ≡ [X(sP1 ), . . . ,X(sPm)]′, SP ≡ [S(sP1 ), . . . ,S(sPm)]′, and AP = [A(sP1 ), . . . ,A(sPm)]′.

Conditioning on the parameter vector θ, the predictive distribution, YP |Z, is derived as:

YP |Z ∼ Nm(XPβ + SPµη|Z + APµξ|Z, ΣYP |Z), (3.3)

where

µη|Z ≡ KS′C−1(Z−Xβ),

µξ|Z ≡ Q−1A′C−1(Z−Xβ),

ΣYP |Z ≡ SPΣη|ZSP
′
+ APΣξ|ZAP ′

+ SPΣη,ξ|ZAP ′
+ (SPΣη,ξ|ZAP ′

)′,
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with Ση|Z ≡ var(η|Z) = K − KS′C−1SK′, Σξ|Z ≡ var(ξ|Z) = Q−1 − Q−1A′C−1AQ−1,

and Ση,ξ|Z ≡ cov(η, ξ|Z) = −KS′C−1AQ−1. Notice that the mean function in the posterior

predictive distribution of YP |Z gives the (simple) kriging predictor and the diagonal elements

of the covariance matrix in the posterior predictive distribution of YP |Z gives the kriging

standard errors. In subsequent discussion, the kriging standard errors are simply referred to

standard errors obtained from a predictive distribution.

3.2 Computational Complexity

The main computational effort for inferences described in Section 3.1 is devoted to calculating

the inverse and log-determinant of the n×n matrix, C ≡ SKS′+AQ−1A′+Vε, in which K

is only an r×r matrix with r � n, and Q is an M×M sparse matrix with M ≈ n or M > n.

Using the results in Proposition 1, such calculation solely involves inversion and determinant

of r × r matrix and M × M sparse matrix. The former has computational complexity

O(r3), while for the latter, the computation can be further reduced to calculate the Cholesky

factor of the sparse matrix. The Cholesky factorization of a generic M ×M matrix requires

computational cost O(M3/3) and memory cost O(M2). As noted in Rue and Held (2005), to

calculate Cholesky factor of an M ×M sparse matrix defined through an undirected GGM,

efficient algorithms can be utilized to reduce the computational complexity to O(M1.5) in

two dimensional space, and its Cholesky factor requires memory cost O(M logM). As we

focus on the CAR structure in the GGM component, the matrix A′V−1ε A will be diagonal,

and hence the matrix Q + A′V−1ε A has the same sparsity pattern and computational cost

as the matrix Q. For a single prediction location, the calculating the conditional mean and

variance requires the computations of Q−1a, (Q+A′V−1ε A)−1T,T′(Q+A′V−1ε A)−1T,S′DS

for a vector a of length M and an M×r matrix T, which require computational cost O(M1.5),

O(M1.5+M1.5r), O(M1.5+M1.5r+Mr2), and O(M1.5+M1.5r+Mr2+nr2), respectively. The

overall computational cost is O(M1.5r+Mr2). In terms of memory, inference for parameter
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estimation and spatial prediction requires to store the matrices S, A, Cholesky factors for

Q and Q + A′V−1ε A. In particular, the basis matrix S is sparse with memory cost less than

O(nr). The basis matrix A is also a sparse matrix with memory cost O(n). So, these basis

matrices have memory cost less than O(nr). The memory cost for Cholesky factors of Q and

Q + A′V−1ε A is also very cheap, since it only requires memory cost O(M logM). Although

inversion of an M ×M sparse matrix Q + A′V−1ε A is needed, there is no need to store its

inverse, but we only need to deal with much smaller matrices, (Q + A′V−1ε A)−1T, where T

represents an M × r matrix or M -dimensional vector. Thus, this matrix never has memory

cost more than O(Mr). Unlike the full Gaussian process, the overall memory cost in FGP

will never exceed O(Mr) since logM is much smaller than r.

4 Synthetic Examples

In this section, several simulation examples are provided to demonstrate the robustness

under misspecified covariance families and nonstationary performance of FGP as well as its

computational efficiency. We apply FGP to analyze a massive sea surface temperature (SST)

dataset, and make comparisons with other existing methods as well. In all examples, the

FGP is implemented in MATLAB R2018b with the MATLAB function fmincon used for

numerical optimization. The simulation studies are carried out on a 4-core HP system with

Intel Xeon x5650 CPU and 12 Gigabytes memory. The analysis of the SST data is carried

out using 16 cores, and computation for the variance of predictions over entire region of

interest is accomplished through parallel computing. Several figures are generated using the

ggplot2 package (Wickham 2016) and the R software (R Core Team 2018).

To evaluate the predictive performance in the following simulation examples, the root-

mean-squared-prediction error (RMSPE) is used to compare out-of-sample predictions. To

quantify the validility of predictive distributions, the continuous-rank-probability score (CRPS;

Gneiting and Raftery 2007) is reported, where small values of CRPS indicate better predic-
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tion results.

4.1 Robustness under stationary covariance families

The goal of this section is to demonstrate the robustness of predictive performance for

FGP when the underlying true processes are simulated with different families of covariance

functions. In particular, we only focus on Matérn covariance functions and a spherical

covariance function with the following forms:

Matérn: C(h) = σ2 21−ν

Γ(ν)

(√
2ν
h

ρ

)
Kν
(√

2ν
h

ρ

)
,

Spherical: C(h) = σ2

{
1− 1.5

(
h

ρ

)
+ 0.5

(
h

ρ

)3
}
I(h < ρ),

(4.1)

where Γ(·) is the gamma function, Kν(·) is the modified Bessel function of the second kind

with order ν. σ2 is called partial sill, ρ is the range parameter, and ν is the smoothness

parameter in the Matérn covariance function. I(h < ρ) is one if h < ρ and zero otherwise.

As a benchmark, two alternative methods are implemented in addition to the FGP model.

The first alternative is to perform kriging using the true covariance function, which is re-

ferred to as EK. The second alternative is to perform kriging with an exponential covariance

function regardless of the true underlying covariance structure, which is referred to as MK.

Here, we only consider the situation that other types of covariance functions are misspec-

ified as exponential covariance function, i.e., Matérn with ν = 0.5. In addition, we also

compare FGP with Lattice Krig and FRK, which are implemented based on the R packages

LatticeKrig (Nychka et al. 2016) and FRK (Zammit-Mangion and Cressie 2017).

We simulate M = 2500 data points in the domain D ≡ [0, 50]× [0, 50]. Two scenarios are

considered. In each scenario, three different covariance functions are used to simulate the

underlying true spatial processes: Matérn with ν = 0.5, Matérn with ν = 2, and spherical

covariance function. In Scenario 1, we fix the effective range parameter to be 20 in the

Matérn covariance function for ν = 0.5 and ν = 2. The range parameter in the spherical
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covariance function is chosen to be 10. The partial sill is set to be 16 and the measurement-

error variance is set to be 1.6, i.e., signal-to-noise ratio (SNR) is 10. In Scenario 2, we fix the

effective range parameter to be 45 in the Matérn covariance function for ν = 0.5 and ν = 2.

The range parameter in the spherical covariance function is chosen to be 20. The partial sill

is also fixed at 16 with SNR at 10.

In each scenario, 10% randomly selected data are held out to assess the short-range

predictive performance. We compared EK, MK, FGP, FRK, and Lattice Krig based on

30 repeated simulation runs, where the measurement error process is generated with 30

different random seeds. To implement EK, the true covariance parameters φ, σ2, and σ2
ε

are used to perform kriging with the full covariance structure, which should give the best

predictions and can be used as a baseline in each simulation experiment. To implement MK,

an exponential covariance function model is assumed, and the parameters are estimated via

maximum likelihood methods based on observed data, and predictions are obtained through

kriging. The FRK is implemented based on the R package FRK with two resolutions of basis

functions, since adding additional basis functions in FRK gives much worse results with the

FRK package. So, the low-rank component in FGP is fitted with bisquare basis functions at

two different resolutions obtained from the R package FRK. The GGM component in FGP

is assumed to follow a CAR model with its proximity matrix H constructed with the first

order neighborhood structure. The EM algorithm described in Section 3.1 is utilized to

estimate parameters and obtain spatial predictions based on formulas (3.3). Lattice Krig is

implemented based on the R package LatticeKrig with three levels of basis functions and

default settings for other tuning parameters.

The procedure EK with the true covariance model and true covariance parameters, per-

forms the best among all methods. The prediction results in Scenario 1 are shown in Figure 1.

For effective range 20 in the Matérn covariance function, the predictive performance of EK

and FGP improves as the spatial process becomes smoother, while the predictive perfor-

mance of MK and Lattice Krig deteriorates significantly. MK shows unstable predictive
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results under different covariance functions in terms of RMSPE and CRPS, since the per-

formance of MK deviates significantly relative to EK under the Matérn with ν = 2 and the

spherical covariance function. FGP gives similar RMSPE and CRPS as those in EK. Lattice

Krig gives a slightly larger RMSPE and much larger CRPS than FGP. FRK gives worst

prediction results among all methods under all three different covariance functions.
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Fig. 1. Boxplot of predictive measures in Scenario 1 based on 30 simulations. The top and
bottom rows show the RMSPEs and CRPSs for five methods under three different covariance
functions, respectively. Note that LK is short for Lattice Krig.

When the effective range is increased to 45 in the Matérn covariance function, Figure 2

show that EK, MK, and FGP give better results as the spatial process becomes smoother

compared to Scenario 1, while Lattice Krig gives worse predictive results. MK performs much

stable relative to EK than those in Scenario 1. It is not surprising that MK can perform

well in practice (Stein 1988; Kaufman and Shaby 2013). In contrast, FGP is also able to

give similar predictive performance as MK and at the same time FGP gives better predictive

performance than Lattice Krig. Lattice Krig gives larger CRPS than all the other methods.

This is likely due to the fact that conditional simulation technique is used to approximate

the predictive variance. Figure 2 shows that both MK and FGP achieve above 94% median

17



relative efficiency over EK under the Matérn covariance with ν = 0.5 and the spherical

covariance function. In contrast, Lattice Krig has slightly smaller median relative efficiency

that FGP under these two covariance functions. For the Matérn covariance with ν = 2, FGP

does not have good performance as MK but does have better performance than Lattice Krig.

The predictive performance of FRK seems to vary slightly when the smoothness parameter

changes from 0.5 to 2. This probably explains why there is a moderate discrepancy between

the predictive performance of FGP and that of EK.

In our experiments, we did not tune the basis functions in the low-rank component

as well as those in the GGM component. With a fairly easy specification, FGP can give

robust prediction results when the underlying true fields are generated by different stationary

covariance functions. In Appendix B, we also show covariance approximations by evaluating

correlation matrices over 50-by-50 grid points in these two scenarios. Both MK and Lattice

Krig have similar patterns in their covariance matrix plots, but FRK and FGP have different

patterns. This is because the low-rank matrices in FRK and FGP are unstructured, and

they don’t assume a specific parametric model for the random coefficients as in Lattice Krig.

When the quality of likelihood approximation including covariance approximation is desired,

one can impose a further parametric structure on the matrix K. It is worth noting that the

FGP model is not designed to approximate a target covariance function, but is designed

to model the data directly regardless of the underlying true covariance structures and is

aimed at predictive inference. Additional numerical results related to computing time and

covariance approximation can be found in Appendix A and Appendix C.

4.2 Nonstationary Performance

This section aims at demonstrating the predictive performance of FGP under nonstationary

spatial processes.

To setup the experiment, we choose the following deterministic function f(s) = exp{−(s/750−
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Fig. 2. Boxplot of predictive measures in Scenario 2 based on 30 simulations. The top and
bottom rows show the RMSPEs and CRPSs for five methods under three different covariance
functions, respectively. Note that LK is short for Lattice Krig.

1)2}+exp{−0.8(s/750+1)2}−0.05 sin(8(s/750+0.1)) adapted from Guhaniyogi et al. (2017).

The hidden process Y (·) is generated from f(·) by defining Y (s) = −10f(s1)f(s2) in the do-

main D = [−1500, 1500]× [−1500, 1500], where s ≡ (s1, s2) ∈ D. We first generate the true

process Y (·) at a 100× 100 regular grid in D; see the upper-left panel of Figure 3. The data

are then generated by adding a measurement-error process ε(·) such that the signal-to-noise

ratio is 10. Specifically, the empirical variance of Y (·) at these 10000 locations is calculated

first, σ̂2
Y = 4.4343. The measurement-error variance is then set to be σ2

ε = 0.1σ̂2
Y . To evaluate

prediction performance, we hold out data in the rectangular region [−750, 0, ]× [−375, 375]

to test long-range prediction skills. In addition, we hold out data at 1,000 randomly selected

remaining locations to evaluate short-range prediction skills. The right-panel of Figure 3

shows the remaining 8400 observations, which are used to fit the following six models:

(1) CAR model with the first order neighborhood structure;

(2) NNGP with 25 neighbors and 15000 MCMC samples;

(3) Lattice Krig with 900 + 2401 + 7569 = 10870 basis functions at three resolutions;
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(4) FRK model with r = 24 + 136 = 160 basis functions at two different levels;

(5) FRK model with r = 24 + 136 + 688 = 848 three levels of basis functions at three

different levels;

(6) FGP with two levels of basis functions (r = 160) and first order neighborhood structure

in GGM component.

The CAR model and FGP are implemented in MATLAB. NNGP is implemented with the R

package spNNGP (Datta et al. 2016) using the response option. Lattice Krig is implemented

with LatticeKrig using the default setting. FRK is implemented with FRK.

To compare each model, RMSPEs and CRPSs are computed based on 15 simulation

runs. Table 1 shows that FGP gives smallest RMSPE and CRPS among all the methods.

In particular, the CAR model as a special implementation of FGP without the low-rank

component gives the largest RMSPE. The NNGP model assumes an exponential covariance

function, and gives the second largest RMSPE. These two models fail to capture the nonsta-

tionary spatial dependence structure. FRK is first fitted with two levels of basis functions.

Its prediction accuracy is much better than that of CAR and NNGP. There are two reasons

for NNGP model to give poor performance not as good as some other methods: the NNGP

model approximates a stationary exponential covariance function which is deemed not to

capture nonstationary dependence structure very well; and most prediction locations in the

contiguous missing regions share the same neighbor sets due to the way NNGP works, which

leads to a large discrepancy compared to the underlying true field. For FRK, the predictive

performance does not improve but becomes worse when a third resolution of basis functions

is added. This indicates that adding more basis functions may not necessarily improve the

predictive performance of FRK if the basis functions are not chosen well. This poor predic-

tive performance in FRK is possibly due to some artifacts on the choice of basis functions

over large contiguous missing regions as pointed out in Bradley et al. (2018). Readers are

referred to Tzeng and Huang (2018) and Ma et al. (2019) for alternative ways to specify basis

functions that improve the predictive performance in FRK. FGP performs better than FRK
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even though more basis functions are incorporated in FRK. Lattice Krig performs slightly

better than FRK, but does not perform as well as FGP. We also report the computing time

for these methods, though we do not recommend interpreting it literately for methods imple-

mented in different softwares. The predictions and associated kriging standard errors from

FGP are shown in Figure 3, which reveals that FGP can well capture the nonstationary

structure for this smooth underlying true field. In Appendix D, we also illustrate that FGP

can also perform very well under a non-smooth underlying true field.

Table 1. Results under a nonstationary spatial field. The average of RMSPEs and the
average of CRPSs over 15 simulations are reported for each model with standard deviations
included in the parenthesis. The average computing time over 15 simulations for each model
is also reported.

Model CAR NNGP Lattice Krig
FRK FGP

r = 160 r = 848 r = 160

RMSPE
2.3492 1.5194 0.7331 0.6704 1.5023 0.4733

(0.022) (0.076) (0.019) (0.053) (0.082) (0.1059)

CRPS
1.2575 1.3023 0.7710 0.9721 1.1512 0.3029

(0.012) (0.141) (0.033) (0.081) (0.040) (0.041)

Time (mins) 0.32 63.6 3.20 0.31 1.00 3.50
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Fig. 3. A simulated dataset and prediction results from FGP. The upper-left panel shows
the underlying true field Y (·) evaluated at 100×100 locations. The upper-right panel shows
the observations by adding random measurement errors to Y (·). Locations with observations
held out are colored white. The bottom-left panel shows the spatial predictions from Y (·)
in FGP, while the bottom-right panel plots the corresponding standard errors.
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5 Application with Sea Surface Temperature Data

Sea surface temperature plays a vital role in the Earth’s atmosphere and climate systems. A

complete and accurate map of SST is essential in oceanographic sciences, weather forecasts,

and in studying global and regional climate changes (Donlon et al. 2002). In this section, the

performance of FGP is illustrated by analyzing a dataset of n = 391, 789 observations of SST

on July 6, 2002. These data are obtained by combining and transforming original Level 2 data

at 4 or 9 km spatial resolutions from the Moderate Resolution Imaging Spectroradiometer

(MODIS) instruments on board NASA’s Terra and Aqua satellites. The resulting data

product is defined at a global grid of equal-areal hexagon cells with intercell distance 30 km,

called Discrete Global Grids (DGGs; Sahr et al. 2003). This overlaid grid of 30-km hexagons

defines the spatial resolution of interest in our analysis and is used for the corresponding

lattice for the GGM component in FGP. There are 440,894 DGG hexagons over ocean, due

to alignment of the satellite orbits and failure to retrieve (e.g., presence of clouds). SST

observations are available at n = 391, 789 hexagons, and thus there are 49,105 hexagons

without any observations. The measurement-error variance is estimated as 0.0112 by fitting

empirical semivariograms near the origin as in Kang et al. (2010).

Exploratory analysis suggests that the trend term be modeled as a quadratic function

in terms of latitude. The covariates X(·) = [1, latitude(·), latitude2(·)]′ are used in (2.5).

For the low-rank component, as suggested in Cressie and Johannesson (2008), the multi-

resolutional local bisquare basis functions are used over the globe. These basis functions are

defined as: S(u) = {1 − (‖u − v‖/r)2}2 if ‖u − v‖ ≤ r, and S(u) = 0 otherwise, where

v is the center of basis function and r is the radius of basis function. There are 32 basis

functions from the first resolution, 92 from the second and 272 from third. Due to the fact

that there are 138 basis functions with majority of support over land instead of ocean, these

basis functions are excluded, which results in a total number of r = 258 = 21 + 61 + 176

basis functions in the low-rank component. For the GGM component, the CAR model is
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assumed, where the proximity matrix H is constructed with 0-1 weights based on first order

neighborhood structure, and ∆ is chosen to be the identity matrix.

In the validation study, data are held out in two ways: (1) 22,204 observations are held

out in a specific region S1 between latitudes −60◦ and 60◦ and longitudes −145◦ and −130◦,

referred to as missing by design; (2) 10% of remaining observations are randomly sampled.

The corresponding set of locations is denoted by S2, referred to as missing at random.

Therefore, 59, 162 observations are held out in S1∪S2 to evaluate the predictive performance,

and 391, 789 − 59, 163 = 332, 626 observations are used for parameter estimation. In what

follows, we only compare FGP with Lattice Krig, FRK, and CAR models. For Lattice Krig,

we use the default setting in LatticeKrig with (8, 568 + 30, 276 + 113, 442 =)152, 286 basis

functions at three different resolutions. For FRK, we first consider 258 basis functions at

three different levels, and then we add additional fine-resolutional basis functions so that

FGP and FRK will have similar computing time or memory cost. Specifically, we add basis

functions at next two finer resolutions with a total of r = 258 + 614 = 872 basis functions

and r = 872+158 = 1030 basis functions, respectively, where large number of basis functions

at much finer resolution have been deleted due to numerical stability problems. We did not

further increase the number of basis functions in FRK, since it requires too much computer

memory. FGP is only implemented with 258 basis functions at the first three resolutions. The

EM algorithms are used for both FGP and FRK to obtain parameter estimates. For the CAR

model, the maximum likelihood estimates are obtained through numerical optimization using

the MATLAB function fmincon with the interior-point algorithm. To compare predictive

performance of Lattice Krig, FRK, FGP, and CAR, the RMSPE and CRPS are calculated

for these methods. The results in Table 2 show that FGP outperforms the other three

methods in terms of predictive performance no matter whether data are missing in a large

region or missing at randomly sampled locations. Even though we increase the number of

basis functions in FRK, FGP can still perform better than FRK. The parameter estimation

in Lattice Krig took about 2.3 hours. The EM algorithms in FRK took about 8.0 minutes,
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40 minutes, and 60 minutes to get parameter estimates for 258, 872, 1030 basis functions

in FRK, respectively. The numerical optimization algorithm to obtain maximum likelihood

estimates in the CAR model took 6.4 minutes. The EM algorithm for FGP took about 2.4

hours to get parameter estimates. The computation of spatial predictions at all prediction

locations took about 41.0 seconds in FRK with 258 basis functions, 49.8 seconds in FGP, and

4.7 seconds in the CAR model. Computing the kriging standard error at each location took

about 11.4 seconds in FRK, 64.1 seconds in FGP, and 4.9 seconds in the CAR model. This

example also shows that with a more complicated model, FGP does require more computing

time compared to the other two methods, but it is capable of providing better and more

reliable predictions.

Table 2. Results from the validation study using the SST data. The RMSPE and CRPS
are given for Lattice Krig, FRK, FGP, and CAR over all held-out locations.

Lattice Krig
FRK FGP

CAR
r = 258 r = 872 r = 1030 r = 258

RMSPE 0.6421 1.1292 1.0210 0.8965 0.5749 0.6676

CRPS 0.8024 0.5957 0.5381 0.4731 0.3013 0.5830

We now provide the results when FGP is used to analyze all available SST data. The

estimates of conditional marginal variance and spatial dependence parameters in FGP are

τ̂ 2 = 0.123 and γ̂ = 0.163. Spatial predications are only made at 283,966 locations in a large

rectangular region between longitudes −130◦ and 130◦ and latitudes −60◦ and 60◦ region

over the entire ocean. The FGP took about 52.4 seconds to obtain all the spatial predictions

over entire ocean. Figure 4 shows the predictions and associated kriging standard errors

over this large region (upper panels) as well as zoomed-in maps for a subregion in Indian

Ocean (lower panels), which clearly suggests that the standard errors reflect the pattern of

the missing data, and that the FGP captures spatial variation of SST very well.
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Fig. 4. SST and its predictions. Upper-left panel: the SST data (unit: Kelvin). The larger
rectangular region delineated shows the region where spatial predictions will be made. The
smaller rectangular region delineated marks the area for which zoomed-in views are shown
in the bottom panels. Upper-middle and upper-right panels: the spatial predictions and
associated standard errors from the FGP, respectively.

6 Discussion

This article presents a fused Gaussian process model that combines the low-rank component

and an undirected Gaussian graphical model to analyze very large spatial datasets. The

covariance function in FGP allows nonstationary dependence structure and robust predictive

performance. Numerical studies show that the FGP allows fast computation for very large

or massive spatial datasets and is able to provide efficient and robust spatial predictions

against misspecification of the spatial covariance structure. The current implementation of

FGP seems to have limited ability to approximate a target covariance function, but this does

not affect the validity and efficiency of its associated predictive distribution, since FGP is

designed to model data directly with a semiparametric covariance function. If the quality

of covariance approximations is the primary target, normalization of basis functions might

help FGP to approximate stationary covariance functions as in Nychka et al. (2015). In
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current examples, the graphical-model component is assumed with a parsimonious model:

the spatial conditional autoregressive model. Alternative graphical models can be utilized

for the GGM component in FGP. For example, the method in Lindgren et al. (2011) can

be used to construct the precision matrix in the GGM component. The corresponding basis

function can be chosen to be a piecewise linear basis function. The GGM component can

also be chosen as a simultaneous autoregressive model, and the corresponding basis function

can be chosen to be the Wendland basis function in a similar way as in Nychka et al. (2015).

A natural extension of a FGP model is to impose a special structure in the covariance

matrix in the low-rank component, and perform fully Bayesian inference. For instance, one

can assume a parametric covariance function such as the Matérn family in the low-rank

component. A fully Bayesian analysis can thus be carried out with appropriate prior specifi-

cations. Moreover, the GGM component in a FGP model can be assumed with independent

block structures defined on partitioned subregions. This allows efficient computations for

extremely large number of BAUs. These topics will be left for future research.

The FGP model has very nice change-of-support property. Let R ⊂ Rd and define

Y (R) ≡
∫
R Y (s) ds/|R|, where |R| is the d-dimensional volume of R. Then

cov(Y (R1), Y (R2)) = S(R1)
′KS(R2) + A(R1)

′Q−1A(R2), R1,R2 ⊂ Rd,

where S(R) ≡ (S1(R), . . . , Sr(R))′; A(R) ≡ (A1(R), . . . , AM(R))′; Si(R) ≡
∫
R Si(s) ds/|R|;

and Ai(R) ≡
∫
RAi(s) ds/|R| for R ⊂ Rd. Thus, the basis functions can be integrated offline

and the formulas for spatial prediction and standard error will be of the same form. The

current FGP model can be easily generalized to the space-time framework. For example,

one may assume a spatio-temporal random-effect model ν(s, t) = St(s)′η(t), where the basis

function St(·) depends on time t = 0, 1, . . ., and random vectors {η(t) : t = 0, 1, . . .} follow

an autoregressive model (Cressie et al. 2010); see Ma and Kang (2019) for detailed model

formulation.
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Supplementary Materials

The online supplementary materials include additional numerical simulations and the details

of the EM algorithm. In addition, we also include the computer code to implement the FGP

model with illustrating examples in the simulation study.
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