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Developing global maps of carbon dioxide (CO2) mole fraction (in units of parts per million) near
the Earth’s surface can help identify locations where major amounts of CO2 are entering and exiting
the atmosphere, thus providing valuable insights into the carbon cycle and mitigating the greenhouse
effect of atmospheric CO2. Existing satellite remote sensing data do not provide measurements of
the CO2 mole fraction near the surface. Japan’s Greenhouse gases Observing SATellite (GOSAT) is
sensitive to average CO2 over the entire column, and NASA’s Atmospheric InfraRed Sounder (AIRS)
is sensitive to CO2 in the middle troposphere. One might expect that lower-atmospheric CO2 could be
inferred by differencing GOSAT column-average and AIRS mid-tropospheric data. However, the two
instruments have different footprints, measurement-error characteristics, and data coverages. In addition,
the spatio-temporal domains are large, and the AIRS dataset is massive. In this article, we describe a
spatio-temporal data-fusion (STDF) methodology based on reduced-dimensional Kalman smoothing. Our
STDF is able to combine the complementary GOSAT and AIRS datasets to optimally estimate lower-
atmospheric CO2 mole fraction over the whole globe. Further, it is designed for massive remote sensing
datasets and accounts for differences in instrument footprint, measurement-error characteristics, and data
coverages. This article has supplementary material online.

KEY WORDS: EM algorithm; Fixed rank smoothing; Kalman filter; Multivariate geostatistics; Spatial
random effects model.

1. INTRODUCTION

Climate forecasting is an important research topic because
of its implications for political, social, and scientific decision
making. One area of active research represents the behavior
of the atmosphere through general circulation models, which
approximate the atmospheric circulation based on equations
describing motion of fluids and the input of thermodynamic
energy sources such as solar radiation and latent heat (e.g.,
McGuffie and Henderson-Sellers 1997).

About 8 gigatons (Gt) of carbon dioxide (CO2) per year en-
ters the atmosphere, and about half of this is anthropogenic.
While roughly 4 Gt is absorbed by the ocean and terrestrial pro-
cesses, there is a yearly increase of about 4 Gt of atmospheric
CO2. Its mole fraction (in units of parts per million – ppm) is
one of the most important components for modeling and esti-
mating the climate of the 21st century (Houghton et al. 2001),
and a large number of experiments with comprehensive ocean-
atmosphere general circulation models (OAGCMs or GCMs)
prescribe CO2-mole-fraction scenarios using relatively simple
offline carbon cycle models (Friedlingstein et al. 2006). The

accuracies of the GCM predictions depend on the fidelity of
the prescribed CO2 scenarios with respect to current and fu-
ture climatic conditions. Here, remote sensing of atmospheric
CO2 from satellites provides a valuable resource for improving
understanding and characterization of these CO2 scenarios.

Carbon dioxide is a naturally occurring chemical compound
consisting of one carbon atom and two oxygen atoms, and it
cycles in and out of a variety of Earth’s “compartments.” For
example, it is one of the key inputs in photosynthesis, the process
used by plants and other organisms to convert light energy from
the sun into chemical energy, and it is one of the byproducts in
the reverse biological process of respiration. In the atmosphere,
CO2 acts as a greenhouse gas, and its increase since the late 19th
century is believed to be playing an important role in global
warming (Houghton et al. 2001). In water, CO2 dissolves to
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form carbonic acid, which contributes to ocean acidification
and poses a threat to food chains connected to the oceans.

The exchange of CO2 between the atmosphere and the Earth’s
surface is a critical part of the global carbon cycle and an impor-
tant determinant of future climate (Gruber et al. 2009). A car-
bon sink is a natural or anthropogenic reservoir that sequesters
CO2 from the atmosphere (e.g., photosynthesis by ocean organ-
isms or by terrestrial plants). In contrast, a carbon source re-
leases CO2 into the atmosphere; an example of a natural source
is plant respiration, and examples of anthropogenic sources are
land-clearing for agriculture and fossil-fuel burning.

The key to understanding the atmosphere–surface CO2 ex-
change is the lower-atmospheric CO2 mole fraction. Deriv-
ing its global distribution over time is important for studying
places where high amounts of CO2 are being generated and re-
moved. However, there is no global, remote-sensing-based map
of lower-atmospheric CO2. Past estimates of CO2 sources and
sinks have relied on ground-based data, whose locations tend
to be sparsely distributed around the globe. Consequently, esti-
mates over continental-scale areas such as Siberia, Asia, Africa,
South America, and the oceans, which have particularly poor
coverage, have large errors. Remote sensing data offer much bet-
ter coverage, although none of the instruments has sensitivity to
CO2 in the lower atmosphere.

One approach to estimate lower-atmopsheric CO2 is called
flux inversion that combines a priori knowledge of sources and
sinks, a chemistry and transport model, and satellite CO2 ob-
servations to estimate lower-atmospheric CO2 (e.g., Chevallier
et al. 2005). We take a spatial-statistical approach and combine
data from the Greenhouse gases Observing SATellite (GOSAT)
and data from the Atmospheric InfraRed Sounder (AIRS) in-
struments. These two instruments have different sensitivities
in the atmospheric column, which make inferences on lower
atmospheric CO2 in principle possible. The purpose of this ar-
ticle is to use spatial and spatio-temporal statistics to predict
lower-atmospheric CO2 by fusing data from the GOSAT and
AIRS instruments, accompanied by uncertainty quantification
of those predictions.

GOSAT is a polar-orbiting satellite dedicated to the obser-
vation of carbon dioxide and methane, both major greenhouse

gases, from space. It flies at approximately 665 kilometers (km)
altitude, and it completes an orbit every 100 min. The satellite re-
turns to the same observation location every 3 days (Morino et al.
2011). NASA’s Atmospheric CO2 Observations from Space
(ACOS) team uses the raw-radiance data from GOSAT to esti-
mate the column-average CO2 mole fraction in ppm, extending
from the surface to the satellite over a base area correspond-
ing to the instrument’s footprint. In this article, we will be us-
ing GOSAT retrievals that are processed by the ACOS team to
yield Level 2 column-average CO2 data (see Crisp et al. 2012,
for more details), which were available to us through NASA’s
Goddard Earth Sciences Data and Information Services Center.
Hereafter, we refer to these as ACOS data.

AIRS is a high-resolution, infrared-spectrometer instrument
aboard NASA’s Aqua satellite that flies in sun-synchronous
orbit at an altitude of approximately 705 km (Aumann et al.
2003). It completes one orbit every 99 min and returns to
the same observation location every 16 days. AIRS measures
several geophysical quantities such as air and surface temper-
ature, water vapor, and cloud properties, along with green-
house gases such as ozone, carbon monoxide, carbon diox-
ide, and methane. In this article, we make use of the AIRS
CO2 product, which is the mole fraction of CO2 over the mid-
tropospheric segment of the atmospheric column (see Chahine
et al. 2008, for more details). Hereafter, we refer to these as AIRS
data.

AIRS observations have circular footprints with 45-km radii,
while ACOS observations have circular footprints with 5-km
radii. Figure 1 is a schematic diagram of the observational
patterns of ACOS and AIRS under ideal conditions; the left
and middle panels display the spatial change-of-support issue
at hand, namely the vastly different footprint sizes of the two
instruments. The right panel displays the instruments’ sensitiv-
ities to different parts of the atmosphere. The sensitivities dif-
fer mostly in the lower atmosphere, and so lower-atmospheric
CO2 can be approximated by (weighted) differencing of the
ACOS column-average CO2 mole fraction and the AIRS mid-
tropospheric CO2 mole fraction (Section 3.1). These two instru-
ments measure their respective physical processes using differ-
ent technologies, fields-of-view, and retrieval algorithms, which

Figure 1. Left and middle panels: GOSAT and AIRS sampling footprints. Right panel: CO2 sensitivities of GOSAT and AIRS to different
parts of the atmosphere.
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Figure 2. Two 3-day blocks of ACOS data (top row) and AIRS data (bottom row). Shown are data for the three-day block June 4–6, 2010 (left
column) and for the three-day block August 9–11, 2010 (right column). The units of measurement are parts per million (ppm). The displayed
data-locations represent the centers of the footprint and are not scaled according to footprint size.

lead to coverage differences that can both be complementary
and reinforcing.

1.1 GOSAT and AIRS Data

In this article, we carry out data fusion on ACOS data and
AIRS data over the contiguous United States during the Boreal
summer of 2010. The ACOS and AIRS datasets we analyze
are located in a region that extends from 25◦N latitude to 50◦N
latitude and from 132◦W longitude to 65◦W longitude, over the
3-month time period June 1, 2010 to August 30, 2010. We chose
this domain because we have ground-based, lower-atmospheric
validation data from the National Oceanic and Atmospheric Ad-
ministration Carbon Cycle Greenhouse Gases (NOAA CCGG)
aircraft program within this same region and time period. These
aircraft programs collect in situ flask samples of trace gases at
different altitudes, from which we can compare our approxima-
tions of lower-atmospheric CO2 mole fraction to these data.

Over any 3-day block, GOSAT takes 56,000 measurements
over the globe. However, only 2% to 5% of the data collected are
usable since retrievals are limited to clear-sky conditions. The re-
sulting ACOS data are classified into several categories, depend-
ing on quality. We only included measurements in the highest-
quality category, based on a data-quality filter provided by the
ACOS team (G. Osterman, personal communication, February,
2011). Within the spatio-temporal domain described just above,
we obtained 3869 ACOS data points and 40,564 AIRS data
points. We partitioned the data over these 3 months into 3-day
blocks. There are 30 three-day blocks over the three summer

months in 2010, with an average of 128.1 observations per
block for ACOS and 1352.1 observations per block for AIRS.
Figure 2 shows the ACOS and AIRS data for two such blocks.

The ACOS data are much sparser than the AIRS data, due to
different instrument designs and retrieval methodologies; ACOS
typically has incomplete coverage of the United States over each
3-day block, while AIRS has reasonably complete coverage.
The coverage of the ACOS and AIRS data in Figure 2, when
compared to the regular sampling patterns in Figure 1, is uneven
due to the presence of clouds and other atmospheric conditions
that result in less-than-complete retrievals of CO2.

1.2 Reviews of Statistical Data Fusion

We are considering two (in principle, many) geophysical pro-
cesses, whose data we wish to fuse. To exploit the temporal,
spatial, and cross-process dependence, any remote sensing data-
fusion methodology must overcome two basic difficulties: the
potential massiveness of the data and the different footprints of
the instruments (i.e., different spatial supports).

Recent spatial and spatio-temporal inferential methodologies
that are scalable in data size include those due to Berliner,
Wikle, and Milliff (1999; hierarchical Bayesian spatio-temporal
model with multiresolution wavelet basis functions and two
data sources of different support), Wikle et al. (2001; more
general than Berliner, Wikle, and Milliff, 1999, with science-
based orthogonal eigenfunctions and multiresolution basis func-
tions to capture residual dependencies), Nychka, Wikle, and
Royle (2002; modeling nonstationary covariance functions with
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multiresolutional wavelet models), Hooten, Larsen, and Wikle
(2003; hierarchical Bayesian model with FFT representation of
spatial random effects), Royle and Wikle (2005; spectral pa-
rameterization of the spatial Poisson process), Banerjee et al.
(2008; approximate optimal prediction with dimension reduc-
tion through conditioning on a small set of space-filling lo-
cations), Calder (2008; bivariate dynamic process convolution
model), Cressie and Johannesson (2008; Fixed Rank Kriging
based on the Spatial Random Effects model), Stein and Jun
(2008; modeling nonstationary covariance models using the dis-
crete Fourier transform), Lindgren, Rue, and Lindstrom (2011;
linking Gaussian fields and Gaussian Markov random fields us-
ing stochastic partial differential equations), and Cressie, Shi,
and Kang (2010; fixed rank filtering and fixed ranked smooth-
ing based on the Kalman filter and the spatio-temporal random
effects model). In this article, we generalize the latter article’s
approach for a single data source, to data fusion for multiple
spatio-temporal data sources.

Cressie, Shi, and Kang (2010) used binned method-of-
moments to estimate the spatio-temporal random effects param-
eters, whereas Katzfuss and Cressie (2011) derived maximum
likelihood estimates of such parameters via the expectation-
maximization (EM) algorithm. In the spatial setting, Katzfuss
and Cressie (2009) demonstrated that their EM estimators are
more stable and accurate than the corresponding binned method-
of-moments estimators. Consequently, in this article, we pursue
spatio-temporal data fusion where the parameters are estimated
via the EM algorithm.

In Section 2, we describe a spatio-temporal data-fusion
methodology that uses the spatio-temporal random effects
model to deal with issues of both big datasets and heterogeneous
spatial supports, while incorporating temporal dependence; an
EM algorithm is developed to estimate the model’s parameters,
and we call the final result spatio-temporal data fusion (STDF).
In Section 3, we make use of STDF to solve the main problem,
namely to estimate lower-atmospheric CO2 from ACOS and
AIRS remote sensing data. We also compare the performance
of STDF against a standard NASA methodology. In Section 4,
we discuss our findings and possible extensions of STDF, and an
Appendix gives the details of our STDF smoothing equations.
Additional details on the spatial and spatio-temporal data-fusion
methodology are provided in supplementary materials online,
along with a zip file of the data we analyze.

2. THE SPATIO-TEMPORAL STATISTICAL MODEL

In this section, we briefly review the spatial statistical frame-
work, give some necessary notation, and present basic deriva-
tions for predictions and for maximum likelihood estima-
tion (via the EM algorithm) of our spatio-temporal model’s
parameters.

2.1 Data Model and Properties

Let {Y (k)
t (s) : s ∈ D} be the kth hidden, real-valued spatial

process of interest on a discretized domain D at time t, where
t = 1, . . . , T , and without loss of generality we assume k ∈
{1, 2}. The spatial domain of interest is written mathematically
as ∪{Si ⊂ Rd : i = 1, . . . , ND}, which is made up of ND pre-

specified, fine-scale, nonoverlapping, basic areal units (BAU’s)
{Si}, with respective locations D ≡ {pi ∈ Si : i = 1, . . . , ND}.
For example, the set of BAUs could be a set of tiling hexagons,
and D could be the hexagons’ centroids. One could think of
them as the finest possible resolution of scientific interest; while
the spatio-temporal random effects model that we shall use be-
low is invariant to their choice, the discretization of the spatial
domain is a fundamental step.

Let Z(k)
t be the vector of noisy observations on Y

(k)
t (·) taken

by the kth remote sensing instrument at N
(k)
t footprints {A(k)

i,t :

i = 1, . . . , N
(k)
t } at time t, where a generic footprint A can be ex-

pressed as the union of those BAUs whose locations are indexed
by D ∩ A. The observed value over a footprint A by instrument k
at time t is modeled as the average of the true process Y

(k)
t (·) over

the BAUs within that footprint, plus measurement error:

Z
(k)
t (A) = 1

|D ∩ A|

{ ∑
s∈D∩A

Y
(k)
t (s)

}
+ ε

(k)
t (A);

A ⊂ Rd , k = 1, 2. (1)

The measurement-error term, ε
(k)
t (A), may have nonzero

mean that captures the instrument bias, and it has
measurement-error variance (σ (k)

ε,t )2v
(k)
t (A) > 0, where v

(k)
t (·) is

known and allows for the possibility of nonconstant variance
over the domain D. We assume that the measurement-error pro-
cesses ε

(1)
t (·) and ε

(2)
t (·) are independent of one another and

of (Y (1)
t (·), Y (2)

t (·)), and that the measurement-error variances,
{(σ (k)

ε,t )2 : k = 1, 2}, are known; in practice, these variances are
obtained from validation data and/or instrument specification.
If unknown, they can be estimated by examining empirical var-
iograms and extrapolating to the origin, such as in Kang, Liu,
and Cressie (2009).

Our data model given by (1) can be compared to that pre-
sented in Wikle (2003) and Wikle and Berliner (2005). We have
possibly nonzero-mean measurement errors, but a very simple
independent error structure; Wikle and Berliner’s error model
has zero mean and a change-of-support effect that exhibits spa-
tial correlation.

The kth true process at time t, namely Y
(k)
t (·), is assumed

to have a linear mean structure and two components of spatio-
temporal statistical dependence:

Y
(k)
t (s) = x(k)

t (s)′α(k)
t + S(k)

t (s)′η(k)
t + ξ

(k)
t (s); s ∈ D, (2)

where we now describe each component of the right-hand side
of (2). The first term is not random and assumes a linear model
in p

(k)
t covariates, x(k)

t (·) ≡ (x(k)
a,t (·) : a = 1, . . . , p

(k)
t )′, where the

regression-coefficient vector α
(k)
t is to be estimated. The middle

term, S(k)
t (·)′η(k)

t , captures the smooth spatial dependence and is
expressed as the inner product of an r

(k)
t -dimensional vector of

known spatial basis functions, S(k)
t (·), and an r

(k)
t -dimensional

Gaussian random variable, η
(k)
t ∼ N (0, K(k)

t ); see Cressie and
Johannesson (2008). We also assume that the random effects,
η

(1)
t and η

(2)
t , are jointly normal and that cov(η(k)

t , η
(l)
t ) ≡ K(k,l)

t ,
where we write K(k)

t ≡ K(k,k)
t . The last term in (2), ξ (k)

t (·), is made
up of spatially and temporally independent Gaussian variables
with mean zero and variance (σ (k)

ξ,t )2. We assume that ξ
(1)
t (·) is
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independent of ξ
(2)
t (·) and of η

(2)
t ; similarly, we assume that

ξ
(2)
t (·) is independent of η

(1)
t .

To allow for the possibility of instrument bias, we assume that
the measurement-error process, ε

(k)
t (·), satisfies E(ε(k)

t (A)) =
c(k)E(Y (k)

t (A)), where zero bias is captured by c(k) = 0. The mul-
tiplicative bias coefficients {c(k) : k = 1, 2} are assumed known,
typically from validation experiments or from comparison with
independent, unbiased data sources.

Combining Equations (1) and (2), we can assemble the scalars
into column vectors and the row vectors into matrices to form a
spatial linear mixed effects model:

Z(k)
t = X(k)

t α
(k)
t + S(k)

t η
(k)
t + ξ (k)

t + ε
(k)
t ; k = 1, 2,

where S(k)
t is an N

(k)
t × r

(k)
t matrix with mth row given by

the r
(k)
t -dimensional vector S(k)

t (A(k)
m,t )

′, ξ (k)
t ≡ (ξ (k)

t (A(k)
i,t ) : i =

1, . . . , N
(k)
t )′, and the other terms are defined analogously. It

is important to note that while the functions x(k)
t (·), S(k)

t (·), and
ξ

(k)
t (·) were originally defined at the BAU level, their definitions

over any footprint A are given by

x(k)
t (A) ≡ 1

|D ∩ A|
∑

s∈D∩A

x(k)
t (s)

S(k)
t (A) ≡ 1

|D ∩ A|
∑

s∈D∩A

S(k)
t (s)

ξ
(k)
t (A) ≡ 1

|D ∩ A|
∑

s∈D∩A

ξ
(k)
t (s),

and we can similarly define the process Y (·) over a footprint as

Y
(k)
t (A) ≡ 1

|D ∩ A|
∑

s∈D∩A

Y
(k)
t (s).

At time t, we can stack datasets Z(1)
t and Z(2)

t to form a vector
of dimension Nt ≡ N

(1)
t + N

(2)
t :(

Z(1)
t

Z(2)
t

)
=

(
X(1)

t 0

0 X(2)
t

) (
α

(1)
t

α
(2)
t

)
+

(
S(1)

t 0

0 S(2)
t

)(
η

(1)
t

η
(2)
t

)

+
(

ξ (1)
t

ξ (2)
t

)
+

(
ε

(1)
t

ε
(2)
t

)
,

or equivalently,

Zt = Xtαt + Stηt + ξ t + εt , (3)

where the dimension of the fixed but unknown vector αt is
pt ≡ p

(1)
t + p

(2)
t , the stacked random vectors ηt , ξ t , and εt are

assumed to be independent of one another, and the dimension
of ηt is rt ≡ r

(1)
t + r

(2)
t .

The all-important temporal dependence is established by as-
suming that the mean-zero vectors {ηt : t = 0, . . . , T } follow a
first-order vector-autoregressive process:

ηt |ηt−1, . . . , η0 ∼ Nr (Htηt−1, Ut ); t = 1, 2, . . . , (4)

with initial state η0 ∼ Nr0 (0, K0). The rt × rt−1 matrix Ht is
called the propagator matrix, and the rt × rt covariance matrix
Ut is called the innovation matrix.

From Cressie, Shi, and Kang (2010), the spatio-temporal ran-
dom effects (STRE) model used in this article relies on the

following bivariate mean-zero process:(
S(1)

t (·)′ 0′

0′ S(2)
t (·)′

) (
η

(1)
t

η
(2)
t

)
+

(
ξ

(1)
t (·)

ξ
(2)
t (·)

)
≡ St (·)′ηt + ξ t (·),

where St (·) is 2 × rt , {ηt : t = 0, 1, 2, . . .} evolves according
to (4), ξ t (·) is independent of ηt , and ξ

(1)
t (·) and ξ

(2)
t (·) are

independent.
The STRE model has a remarkable change-of-support prop-

erty (see the supplementary material, Section A.1) that allows
the covariance matrix of the data vector Zt to be written in terms
of the BAU-level parameters defined below (2):

�t ≡ var(Zt ) = StKtS′
t + CtEt + Vt ,

where Kt ≡ var(ηt ), Vt ≡ var(εt ), and

CtEt ≡ var(ξ t ) =
(

C(1)
t 0

0 C(2)
t

) (
E(1)

t 0

0 E(2)
t

)
, (5)

for N
(k)
t × N

(k)
t matrices C(k)

t ≡ (σ (k)
ξ,t )2IN

(k)
t

and E(k)
t ≡

[
|D∩A

(k)
i,t ∩A

(k)
j,t |

|D∩A
(k)
i,t ||D∩A

(k)
j,t |

: i, j = 1, . . . , N
(k)
t ]. From Cressie and Johan-

nesson (2008), the inverse of the covariance matrix �t can
be computed rapidly via the Sherman-Morrison-Woodbury
formula (e.g., Henderson and Searle 1981):

�−1
t = D−1

t − D−1
t St

[
K−1

t + S′
tD

−1
t St

]−1
S′

tD
−1
t , (6)

where Dt ≡ CtEt + Vt .

2.2 Spatio-Temporal Data Fusion (STDF)

Suppose that we are interested in predicting a stacked vector
of the two processes Y

(1)
t (·) and Y

(2)
t (·) at a set of locations P

(which may consist of areal and/or BAU prediction locations)
at time t ∈ {1, . . . , T }, based on data Z1, . . . , ZT . Notice that
we could allow P to depend on t, but here we choose not to
for simplicity of exposition. Let SP

t , XP
t , and ξP

t represent the
stacked vectors and stacked matrices derived by evaluating the
corresponding terms in (3) at the set of nP prediction locations P;
t = 1, . . . , T (and let YP

t be defined similarly). For example, if
Y(k)P

t and S(k)P
t are vectors corresponding to the set of prediction

locations, P, then YP
t and SP

t are defined as

YP
t ≡

(
Y(1)P

t

Y(2)P
t

)
, and SP

t ≡
(

S(1)P
t 0

0 S(2)P
t

)
.

Consequently,

YP
t ≡ XP

t αt + SP
t ηt + ξP

t ; t = 1, . . . , T .

Let θ denote the parameter values consisting of {αt , Kt ,

(σ (1)
ξ,t )2, (σ (2)

ξ,t )2, Ht , Ut : t = 1, . . . , T }. Assuming that θ is
known, optimal prediction of YP

t is a result of optimal prediction
of ηt and ξP

t , jointly. Cressie, Shi, and Kang (2010) described a
computationally efficient procedure to obtain the posterior ex-
pectations and covariances for {ηt } and {ξP

t }. Their methodol-
ogy, called Fixed Rank Smoothing (FRS), is an extension of the
Kalman smoother and consists of two parts: forward-filtering
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and backward-smoothing. A description of that methodology,
with some modifications to account for the two different fine-
scale variance parameters {(σ (k)

ξ,t )2 : k = 1, 2}, may be found in
the Appendix.

Having obtained the joint posterior distribution of ηt and ξP
t ,

given Z1:T ≡ Z1, . . . , ZT , which is multivariate normal, then
the posterior distribution of YP

t is also multivariate normal. The
posterior mean is a 2nP -dimensional vector

YP
t |T =

(
Y(1)P

t |T

Y(2)P
t |T

)
= XP

t αt + SP
t ηt |T + ξP

t |T , (7)

where ηt |T ≡ E(ηt |Z1:T ) and ξP
t |T ≡ E(ξP

t |Z1:T ). The 2nP ×
2nP mean-squared-prediction-error matrix (which can be shown
to be equal to the posterior covariance matrix) is

MP
t |T ≡ E

([
YP

t − YP
t |T

] [
YP

t − YP
t |T

]′) ≡
(

M(1,1)P
t |T M(1,2)P

t |T

M(2,1)P
t |T M(2,2)P

t |T

)
.

Then,

MP
t |T = SP

t Pt |T
(
SP

t

)′ + RP
t |T + 2SP

t WP
t |T , (8)

where Pt |T ≡ var(ηt |Z1:T ), RP
t |T ≡ var(ξP

t |Z1:T ), and WP
t |T ≡

cov(ηt , ξ
P
t |Z1:T ). We call (7) and (8) the spatio-temporal data

fusion (STDF) equations.
Computation of the various smoothing quantities in this sec-

tion requires inverting the large Nt × Nt matrix, StPt |t−1S′
t +

Dt , where Pt |t−1 ≡ var(ηt |Z1:(t−1)) (see the Appendix for de-
tails), but from (6) the computational complexity of the inversion
is O(r2

t Nt ). Therefore, STDF has computational complexity that
is linear with respect to data size, making it well suited for re-
mote sensing applications, where spatio-temporal datasets tend
to be massive.

When there is only a single spatio-temporal dataset on a
single process, then STDF in (7) and (8) reduces to FRS given by
Cressie, Shi, and Kang (2010). A special case often encountered
in practice consists of data that were observed during a single
time period; that is, T = 1. The data in this special case may be
considered to be spatial-only, for which a discussion is included
in Section A of the supplementary material.

2.3 EM Algorithm for Parameter Estimation

In Section 2.2, we assumed that θ the vector of parameters was
known. In practice, it needs to be estimated from the data. In this
section, we use the EM algorithm to obtain maximum-likelihood
parameter estimates of θ from data {Zt : t = 1, . . . , T }; here
{ηt } and {ξ t } are considered to be “missing data” (see Xu and
Wikle 2007; Katzfuss and Cressie 2011, for the case of a single
dataset). These estimates may then be substituted into the STDF
Equations (7) and (8) in Section 3.2.

Let θ [b] be the parameter vector at the bth EM iteration.
The conditional expectations and covariance matrices for the
“missing data” are defined as

η
[b]
t |T ≡ Eθ [b] (ηt |Z1:T ) (9)

ξ
[b]
t |T ≡ Eξ [b] (ξ t |Z1:T ) (10)

P[b]
t |T ≡ varθ [b] (ηt |Z1:T ) (11)

R[b]
t |T ≡ varθ [b] (ξ t |Z1:T ) (12)

W[b]
t |T ≡ covθ [b] (ηt , ξ t |Z1:T ) (13)

P[b]
t,t−1|T ≡ covθ [b] (ηt , ηt−1|Z1:T ). (14)

The quantities above may be obtained using the smoothing
equations in the Appendix by (temporarily) setting P to be
the set of observed locations at time t. There are identifiabil-
ity issues when both Ht and Ut are allowed to vary freely with
t ∈ {1, . . . , T }, which we address by letting r1 = r2 = · · · = rT ,
H ≡ H1 = · · · = HT , and U ≡ U1 = · · · = UT . For some prob-
lems (e.g., see Section 3), this assumption might be modified to
constant H and U within sequences of successive time point that
partition {1, 2, . . . , T }. We define K[b+1]

t ≡ P[b]
t |T + η

[b]
t |T η

[b]′
t |T and

L[b+1]
t ≡ P[b]

t,t−1|T + η
[b]
t |T η

[b]′
t−1|T . Then, following Katzfuss and

Cressie (2011), the EM updates for θ [b+1] are

α[b+1]
t = (

X′
tQV−1

t QXt

)−1
X′

tQV−1
t

[
Zt − Stη

[b]
t |T − ξ

[b]
t |T

]
,

(15)

K[b+1]
0 = P[b]

0|T + η
[b]
0|T η

[b]′
0|T (16)(

σ
(1)
ξ,t

)2 [b+1] = 1

N
(1)
t

trace
((

E−1
t

[
R[b]

t |T + ξ
[b]
t |T ξ

[b]′
t |T

])
[1,N

(1)
t ]

)
(17)

(
σ

(2)
ξ,t

)2 [b+1] = 1

N
(2)
t

trace
((

E−1
t

[
R[b]

t |T + ξ
[b]
t |T ξ

[b]′
t |T

])
[N (1)

t +1,Nt ]

)
(18)

H[b+1] =
(

T∑
t=1

L[b+1]
t

)(
T −1∑
t=0

K[b+1]
t

)−1

(19)

U[b+1] =
(

T∑
t=1

K[b+1]
t − H[b+1]

T∑
t=1

L[b+1]′
t

)
/T , (20)

where (A)[i,j ]; j ≥ i is the sub-block of the square matrix A con-
sisting of all elements of A whose row and column indices both
belong to the set given by the sequence of successive inte-
gers {i, i + 1, . . . , j}. The EM estimator is θ̂EM ≡ limb→∞ θ [b],
which is a solution to the likelihood equations under certain
regularity conditions (e.g., Katzfuss and Cressie 2011). Some
recommendations about EM convergence criteria and parameter
starting values are included in Section B of the supplementary
material.

3. STDF TO OBTAIN LOWER-ATMOSPHERIC
CO2 MOLE FRACTION

In this section, we apply the STDF methodology presented
in Section 2 to ACOS data and AIRS data to derive lower-
atmospheric CO2 mole fraction over the contiguous United
States, and we compare our approach to a standard NASA
methodology.

3.1 Inferring Lower-Atmospheric CO2 Mole Fraction

To construct the Basic Areal Units, or BAUs (Section 2.1),
we discretized the 25◦ × 67◦ spatial domain that covers the con-
tiguous U.S. into a fine-scale grid of regular, (approximately)
equal-area hexagons using Discrete Global Grid software (Carr
et al. 1998; Sahr 2001). Specifically, we used resolution 16 of
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SPATIO-TEMPORAL DATA FUSION FOR VERY LARGE REMOTE SENSING DATASETS 7

the ISEA Aperture 3 Hexagon (ISEA3H) global grid, with an
inter-cell distance of 1.170 km and a cell area of 1.185 km2. We
define these hexagons as the BAUs {Ai : i = 1, . . . , ND}, whose
centers comprise the index set D; here, ND = 13, 755, 692.
We constructed the three-dimensional covariate x(k)

t (·) using the
constant 1, latitude, and longitude. For the elements of the vector
of basis functions, S(k)

t (·), we used local bisquare functions:

fa(b)(u) =
{(

1 − ||u−ma(b)||2
w(b)2

)2
, for ||u − ma(b)|| ≤ w(b),

0, otherwise.

Here u and ma(b) ∈ S2, the 2-sphere; ma(b) is the ath center
point of the bth resolution, for b = 1, 2, . . . , b0; || · || denotes
great-arc distance; and w(b) is taken to be 1.5 times the shortest
distance between any two center points at resolution b. Fol-
lowing Cressie and Johannesson (2008), we computed a di-
agnostic summary of the SRE parameter estimates by com-
paring theoretical semivariograms to empirical semivariograms
as functions of spatial lag. Based on the diagnostics, we used
b0 = 2 resolutions, namely levels 3 and 4 of the ISEA Aperture
3 Hexagon (ISEA3H) global grid: Level 3 provided 14 evenly
spaced basis-function centers on a hexagonal grid (inter-cell
distance of 1,476 km) over the contiguous United States; and
level 4 provided 51 evenly spaced basis-function centers on a
finer hexagonal grid (inter-cell distance of 852 km) over the
same region. Smaller-scale spatial variation is modeled with
the random process ξt (·) in (2). For this analysis, we assumed
that the covariate-vector function, x(k)

t (·), and the basis func-
tions, S(k)

t (·), do not depend on process k nor on time t. We
also assumed that all observations within the kth dataset have
the same measurement-error variability, so we let v

(k)
t (·) = 1 for

both k = 1 and k = 2.
Studies comparing monthly seasonal variations of AIRS re-

trievals to Matsueda airborne measurements show that AIRS
measurements have an additive bias of 1.0 ppm and a
measurement-error standard deviation of 3.1 ppm (Matsueda,
Inoue, and Ishii 2002; Chahine et al. 2008). Validation studies
comparing ACOS retrievals against Total Carbon Column Ob-
serving Network (TCCON) data indicate that ACOS measure-
ments have a multiplicative bias of −2% and a measurement-
error standard deviation of 5.1 ppm (Crisp et al. 2010; Wunch
et al. 2011) and (G. Osterman, personal communication, Febru-
ary, 2011). We removed the additive bias from AIRS data by
subtracting 1.0 ppm from all AIRS observations prior to ap-
plying STDF. Consequently, the multiplicative bias coefficients
are c(1) = 0 and c(2) = −.02 for AIRS and ACOS, respectively.
The standard deviations of the measurement errors reported by
NASA were used as the measurement-error parameters in our
model (i.e., σ

(1)
ε,t = 3.1 and σ

(2)
ε,t = 5.1).

We ran STDF for each of the three summer months (i.e.,
T = 10 for each analysis). While the parameters H and U do
not vary with time within each month, they are permitted to
change between months with each application of STDF to allow
for large-scale temporal variability. We chose starting values
θ [0] for the first summer month (June, 2010) as discussed in
Section B of the supplementary material. To reduce the time
taken for EM estimation for July and August, we made use of
STDF parameter estimates from the previous month (i.e., we
initialized STDF parameters for July using the converged STDF

parameters for June). We made optimal (smoothing) predictions
and derived corresponding standard errors jointly for column-
average CO2 and mid-tropospheric CO2 for circular footprints
with radius 45 km around the center points of a 1◦ × 1◦ latitude-
longitude grid over the contiguous United States for each of the
30 time periods covered by the data.

To combine column-average CO2 and mid-tropospheric CO2,
we need to account for their vertical extent. In remote sensing,
air pressure is used as a proxy for altitude, for physical reasons
(Crisp et al. 2010). We made the simplifying assumption that
the air pressure at the surface of the Earth is 1000 hectopascals
(hPa), and the air pressure at the satellite instrument is 0 hPa. The
middle troposphere is often defined to be the portion of the at-
mosphere between 500 hPa and 300 hPa (Moore, Remedios, and
Waterfall 2010). We made an additional simplifying assumption
that the CO2 component above 300 hPa can be ignored, because
the number of CO2 molecules at the corresponding altitudes is
comparatively small.

From column-average CO2 mole fraction, YACOS(s), and
mid-tropospheric CO2 mole fraction, YAIRS(s), at location s,
we approximated lower-atmospheric (i.e., 0 hPA to 300 hPa)
CO2 mole fraction, YLA(s), as,

YLA(s) = (1000 − 300)YACOS(s) − (500 − 300)YAIRS(s)

1000 − 500

= 7

5
YACOS(s) − 2

5
YAIRS(s). (21)

From the weighted difference (21), it is straightforward to obtain
the prediction standard error at location s as,

σ 2
LA(s) ≡ ( 7/5,−2/5 )Mt |T (s)( 7/5,−2/5 )′,

where Mt |T (s) is the 2 × 2 mean-squared-prediction-error
matrix for the optimal bivariate predictor, Ŷt |T (s) ≡
(Ŷt |T ,ACOS(s), Ŷt |T ,AIRS(s))′. The lower-atmospheric CO2 spatial
field given by (21) is a first-order approximation, since the in-
struments’ sensitivities to different parts of the atmosphere are
assumed to be indicator functions instead of the continuous
functions shown in Figure 1.

We obtained smoothed values of lower-atmospheric CO2

mole fraction and the corresponding prediction standard errors
over the contiguous United States between June 1 and August
30, 2010 (i.e., for 3 × 10 three-day blocks). In Figure 3, we
show prediction maps in ppm for the two blocks centered on
June 5 and August 10, so that the reader may compare them
with the raw data for the same three-day blocks (see Figure 2).
The prediction map for early June (Figure 3, left panel) indicates
that the lower-atmospheric CO2 values are high in the West and
the North East. The western plume may be related to the topog-
raphy of the Rocky Mountains, while the northeastern plume
is likely related to anthropogenic sources arising from dense
urban environments. In the second prediction map (Figure 3,
right panel) for early August, there is a marked decrease in the
overall CO2 values compared to those of early June. The declin-
ing CO2 mole fraction over this timeframe is consistent with
our understanding of the seasonal CO2 cycle in the northern
hemisphere. In the summer, growing plants and other photo-
synthesizing organisms absorb CO2 and convert it into organic
matter.

TECHNOMETRICS, xxxx 2013, VOL. 00, NO. 0



8 H. NGUYEN ET AL.

Figure 3. STDF lower-atmospheric CO2 prediction maps and corresponding prediction-standard-error maps (inset) for the periods June 4–6,
2010 (left) and August 9–11, 2010 (right). Units are ppm.

Notice that the STDF prediction-standard-error maps tend to
reflect the observational pattern of the ACOS data; the prediction
standard errors are lower in the western part of United States,
where we have good ACOS coverage, and they are higher in the
eastern part, where we have sparse ACOS coverage. The ACOS
data that we used in this study are only available over land, and
thus estimates made near the transition between land and ocean
in the 30 three-day blocks (e.g., California, East Coast) tend to
have higher prediction standard errors.

3.2 Comparison to NOAA Flight Data

The National Oceanic and Atmospheric Administration
(NOAA) has been sampling lower-atmospheric CO2 from air-
craft flights over Lamont, Oklahoma and over Homer, Illinois,
among others. The program’s mission is to capture the sea-
sonal and interannual trends of trace-gas mixing ratios. The
aircrafts typically collect flask samples of air at different alti-
tudes throughout the boundary layer and free troposphere (up to
8 km). These are then analyzed by NOAA’s Earth System Re-
search Laboratory for important trace gases such as CO2. Due

to logistical and operational challenges, these aircraft measure-
ments of lower-atmospheric CO2 can be sparse relative to the
large spatio-temporal domain in our study.

In Figure 4, we display the NOAA aircraft data at these two
locations and time periods against the corresponding 95% pre-
diction intervals for STDF lower-atmospheric CO2. The aircrafts
fly in an ascending spiral from the surface up to about 8 km,
with a majority of the measurements being collected between
1 km and 6 km. The pressure boundary at the lower part of
the troposphere is 500 hPa, which corresponds roughly to an
altitude of 5.5 km, so these aircraft measurements mostly reflect
lower-atmospheric CO2. Aircraft data at the beginning of a flight
tend to be more unstable due to calibration and atmospheric is-
sues, and consequently there are a moderate number of outliers
in Figure 4, all identifiable by their low altitude. It is impor-
tant to note that NOAA aircraft observations are instantaneous
CO2 mole fraction. On the other hand, our STDF predictions
represent the average CO2 mole fraction over the entire lower
atmosphere within a 3-day period in the column of interest.

Despite the mismatch in spatial and temporal support, the
STDF lower-atmospheric CO2 predictions compare quite well

Figure 4. Shown are 95% prediction intervals for STDF lower-atmospheric CO2 (in red) and NOAA aircraft CO2 (colored circles) at Lamont,
Oklahoma (left panel), and Homer, Illinois (right panel). The altitudes of aircraft observations (in meters) are indicated by the color bars.
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to the NOAA data. Discounting the low-altitude outliers, the
NOAA data at Homer, Illinois (Figure 4, right panel) mostly
fall within the STDF prediction intervals. The aircraft data at
Lamont also correlate well with the STDF confidence intervals.
The interday small-scale fluctuations in the lower-atmospheric
CO2 mole fraction may represent atmospheric transport and
surface exchange, while the large-scale declining trend in mole
fraction represents seasonality. Both the NOAA data and the
STDF lower-atmospheric CO2 values at the two locations appear
to capture the well known seasonal CO2 drawdown, which fea-
tures declining CO2 mole fraction in the boreal summer as plants
use atmospheric CO2 in photosynthesis. The STDF-predicted
drawdown of about 7 ppm over the three summer months is
consistent with the seasonal carbon cycle (Russell and Wallace
2004).

3.3 A Comparison to Kriging

We compare our STDF methodology against spatial-only,
single-dataset kriging, which was chosen because of its sim-
plicity and the fact that it is widely used in remote sensing
(see, e.g., Rossi, Dungan, and Beck 1994; Atkinson and Lewis
2000; Chatterjee et al. 2010). Classical kriging as developed by
Matheron (1962) is popular in the remote sensing community
because it explicitly models the spatial dependence and produces
estimates of uncertainty. However, its reliance on a stationary
variogram and its avoidance here of temporal dependence are
features that we expect STDF will improve upon.

For six randomly chosen time blocks (centered on the dates
June 14, June 17, July 11, July 26, August 1, and August 16),
we withheld all ACOS and AIRS data in a reserved region
inside the contiguous United States from 36◦N latitude to 43◦N
latitude and from 105◦E longitude to 95◦E longitude as test
data. The remaining data were used as “training data” for STDF
and kriging. We then used the fitted STDF and kriging models
to make predictions of column-average and mid-tropospheric
CO2 at the test locations within the reserved region in the six
time blocks.

The STDF procedure was applied to the training data as de-
scribed earlier in this section (with the exception that we did
not correct for biases in AIRS and ACOS, to make the predic-
tions match the held-out validation data). For kriging, we made
predictions for each CO2 product within each reserved region
using only training data from the same time block. Semivari-
ogram parameters for AIRS data were estimated for each time
period from the nonwithheld data using empirical robust semi-
variogram estimates (Cressie 1993, Section 2.4); since ACOS
data are very sparse, we combined all ACOS data over the 3
months to estimate the semivariogram parameters. We chose to
use a spherical semivariogram model based on examination of
the empirical semivariograms.

Since CO2 is known to have zonal and meridional variability,
we assumed a geometrically anisotropic semivariogram model.
In general, column-average CO2 tends to have longer meridional
(i.e., longitudinal) correlation length, and mid-tropospheric
CO2 tends to be less anisotropic because the air above the lower
atmosphere is well mixed. Examination of the empirical semi-
variograms from the ACOS data indicates that column-average
CO2 is highly anisotropic with a range of 8.4◦ in the latitudinal

Table 1. Continuous rank probability score for kriging and STDF
when applied to withheld data from ACOS and AIRS. A smaller value

represents a better prediction performance

Kriging STDF

ACOS 1.75 1.70
AIRS 1.66 1.55

direction and 14.8◦ in the longitudinal direction. On the other
hand, mid-tropospheric CO2 is roughly isotropic with a range
of 14.2◦ in all directions.

Having obtained predictive distributions at the withheld lo-
cations using both STDF and kriging, we evaluated their per-
formance using the continuous rank probability score (CRPS),
a strictly proper scoring rule that generalizes the absolute error
and assigns a numerical score based on a predictive distribu-
tion and the corresponding realized observation (Gneiting and
Raftery 2007).

Since our test data consist of observations, {Z(k)
t (A)}, instead

of the true values, {Y (k)
t (A)}, we obtained approximate predic-

tive distributions for {Z(k)
t (A)} by adding the measurement-error

variances of the instruments to the STDF and kriging variances,
and then we calculated the CRPS as described in Gneiting and
Raftery (2007).

We display the CRPS for both methods in Table 1, averaged
over all test data. In both instances, STDF has smaller CRPS,
indicating better forecasting performance. For column-average
CO2, STDF’s CRPS is a couple of percent smaller than kriging’s;
for mid-tropospheric CO2, STDF’s CRPS is about 7% smaller.
These results indicate that taking into account temporal and
inter-dataset correlations can improve bivariate predictions.

In addition to taking advantage of spatial, temporal, and in-
terdataset dependence, STDF is computationally efficient. The
STDF predictions on June data, where we initialized K0, H,
and U as described in Section B of the supplementary material,
took 4 min on a 3.06 GHz machine with an Intel Duo Core
processor, and most of the time was devoted to iterating the EM
algorithm until convergence. In subsequent runs on July data
and August data, we initialized the code with much-improved
starting values, and the EM algorithm converged within 1 min
on both runs. This speed makes STDF particularly well suited
for use in analyzing remote sensing data, where an important
component of the usability of methodology is whether the as-
sociated algorithm can process 1 day’s worth of satellite data
in (much) less than a day. Our algorithm processes 3 months of
satellite data in approximately 6 min.

The linear scalability of the STDF computations makes it es-
pecially relevant in the face of rapidly improving remote sensing
technologies, where advances in design and manufacturing have
vastly improved the data yield of remote sensing instruments.
Modern instruments, such as the Orbiting Carbon Observatory
2 (OCO-2), scheduled to be launched on July 1, 2014, may be
able to collect up to 75 times the daily yield of the instruments
used in this study. The traditional kriging methodology used
as a comparison in this section, has computational complex-
ity O(N3), so a 75-fold increase in data size would equate to
a 421,875-fold increase in computational time. However, for
STDF, a 75-fold increase in data size simply leads to a 75-fold
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increase in computational time. This means that processing 3
months of OCO-2 data (instead of GOSAT data) using STDF
would take 450 minutes, or seven and a half hours. Our STDF
methodology clearly still passes the usability test in the case of
OCO-2’s expected larger datasets.

4. DISCUSSION AND CONCLUSIONS

This article is concerned with spatio-temporal prediction of
lower-atmospheric CO2 over the contiguous United States from
two remote sensing instruments—GOSAT/ACOS and AIRS.
We introduce spatio-temporal data fusion (STDF) as a solution
to this problem, which makes optimal predictions of a weighted
difference of column-average CO2 and mid-tropospheric
CO2 from noisy and incomplete spatio-temporal datasets. The
Spatio-Temporal Random Effects (STRE) model underlying
STDF is especially attractive in that it allows for seamless
change-of-support and scalability to massive data sizes.

In our comparison of STDF outputs and available aircraft
validation data, we show that STDF is able to reproduce the
seasonal feature of the annual CO2 drawdown and approximate
the CO2 trend at Lamont, OK and Homer, IL. Current estimates
of CO2 sources and sinks in general circulation models tend
to rely on ground-based data, whose sparse locations around
the globe lead to large uncertainties that can propagate “down-
stream” into climate-model predictions. High-coverage STDF-
derived CO2 from ACOS data and AIRS data can help inform,
validate, and improve characterization of these CO2 scenarios,
leading to improved climate forecasts from general circulation
models.

In Section 3, we used STDF to predict a measure of lower-
atmospheric CO2 mole fraction via data from two instruments.
The methodology can be readily applied to other remote sensing
datasets, especially those where the data sizes make interpola-
tion via traditional methodologies (e.g., splines, loess, simple
kriging, etc.) infeasible. Indeed, STDF can be applied not only
to closely related geophysical processes like column-average
CO2 and mid-tropospheric CO2, but to more disparate data
(e.g., carbon dioxide and air temperature) to make joint pre-
dictions of the two underlying correlated processes. STDF can
capitalize on the between-process correlation and produce more
accurate predictions than one would obtain from either of the
two datasets alone. In general, STDF is effective when there is
strong temporal dependence between consecutive time blocks,
and the corresponding datasets complement each other in terms
of data coverage.

In this article, we have chosen to estimate the spatio-temporal
model’s parameters using the EM algorithm. Because we then
proceed with inference on the latent processes by substituting
the parameter estimates into the STDF equations of Section 3.2,
our prediction standard errors do not include variability due to
uncertainty in the parameter estimates. We could rectify this by
putting a prior distribution on the parameter vector θ and carry
out Bayesian inference to produce optimal predictions and asso-
ciated posterior uncertainties (e.g., Katzfuss and Cressie 2012,
in the single-instrument case). While the dimension-reduction
feature of the STRE model would reduce the computational bur-
den of the Monte Carlo algorithm, computational time would be
much longer overall (hours/days instead of minutes) than that

of EM-based STDF. In remote sensing applications, it is very
important to develop algorithms with reasonable run-times, so
that they can accommodate the constant influx of new data. Es-
timating parameters instead of putting priors on them is a very
effective compromise.

In summary, we have developed STDF and applied it to
spatio-temporal prediction of lower-atmospheric CO2. We can
obtain high global coverage with known uncertainties, and
hence, we can construct CO2-mole-fraction scenarios for use
in general circulation models. The scalability of STDF makes
it especially appropriate for the massive datasets often found in
remote sensing of the environment.

APPENDIX

STDF SMOOTHING EQUATIONS

Let Z1:t̃ ≡ (Z′
1, . . . , Z′

t̃ )
′, for t̃ = 1, . . . , T , and we define

ηt |t̃ ≡ E(ηt |Z1:t̃ ) and ξP
t |t̃ ≡ E(ξP

t |Z1:t̃ ) as the conditional ex-
pectations of the respective quantities given data Z1:t̃ . Simi-
larly, we denote the conditional covariance matrix of ηt by
Pt |t̃ ≡ var(ηt |Z1:t̃ ), the conditional covariance matrix of ξP

t by
RP

t |t̃ ≡ var(ξP
t |Z1:t̃ ), and the conditional covariance matrix be-

tween ηt and ξP
t by WP

t :t̃ ≡ cov(ηt , ξ
P
t |Z1:t̃ ).

We first initialize η0|0 = 0 and P0|0 = K0. The filtering quan-
tities for t = 1, . . . , T are given by the recursive relationships:

ηt |t = ηt |t−1 + Pt |t−1S′
t

[
StPt |t−1S′

t + Dt

]−1

× (Zt − QXtαt − Stηt |t−1) (A.1)

ξP
t |t = CPZ

t EPZ
t

[
StPt |t−1S′

t + Dt

]−1

× (Zt − QXtαt − Stηt |t−1) (A.2)

Pt |t = Pt |t−1 − Pt |t−1S′
t

[
StPt |t−1S′

t + Dt

]−1
StPt |t−1 (A.3)

RP
t |t = CP

t EP
t − CPZ

t EPZ
t

[
StPt |t−1S′

t + Dt

]−1 (
EPZ

t

)′(
CPZ

t

)′
,

(A.4)

WP
t |t = −Pt |t−1S′

t

[
StPt |t−1S′

t + Dt

]−1 (
EPZ

t

)′(
CPZ

t

)′
, (A.5)

where

Q ≡
(

(1 + c(1))IN
(1)
t

0

0 (1 + c(2))IN
(2)
t

)
,

var(ξP
t ) = CP

t EP
t , cov(ξP

t , ξ t ) = CPZ
t EPZ

t , and CP
t , CPZ

t , EP
t ,

and EPZ
t are defined analogously to the terms Ct and Et under

(5). The one-step-ahead forecasts are

ηt |t−1 = Htηt−1|t−1

Pt |t−1 = HtPt−1|t−1H′
t + Ut .

Having calculated the conditional expectations and covari-
ances for t = 1, . . . , T from (A.1)–(A.5), we obtain the smooth-
ing quantities by updating “backward” in time (i.e., for t =
T − 1, T − 2, . . . , 0):

ηt |T = ηt |t + Jt (ηt+1|T − ηt+1|t ) (A.6)

ξP
t |T = ξP

t |t + Bt (ηt+1|T − ηt+1|t ) (A.7)

Pt |T = Pt |t + Jt (Pt+1|T − Pt+1|t )J′
t (A.8)

RP
t |T = RP

t |t + Bt (Pt+1|T − Pt+1|t )B′
t (A.9)

WP
t |T = WP

t |t + Jt (Pt+1|T − Pt+1|t )B′
t , (A.10)
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where

Jt ≡ Pt |tH′
t+1P−1

t+1|t
Bt ≡ −CPZ

t EPZ
t

[
StPt |t−1S′

t + Dt

]−1
StPt |t−1H′

t+1P−1
t+1|t .

The cross-covariance term, Pt,t−1|T ≡ cov(ηt , ηt−1|Z1:T ), is
given by

PT ,T −1|T = (Ir − PT |T −1S′
T

[
ST PT |T −1S′

T + DT

]−1
ST )

× HT PT −1|T −1

Pt,t−1|T = Pt |tJ′
t−1 + Jt (Pt+1,t |T − Ht+1Pt |t )J′

t−1;

t = 1, . . . , T − 1,

where Ir is the r × r identity matrix.
In applications where real-time processing is important, the

smoothing approach in this section can be modified to take a
filtering perspective. In this case, we would carry out only the
filtering steps in (A.1)–(A.5), and the conditional expectations
and covariance matrices for the “missing data” in (9)–(14) would
be conditioned on Z1:t instead of Z1:T .

SUPPLEMENTARY MATERIALS

The following supplementary materials can be obtained via a
single download.

Spatial-only data fusion document: The file ”STDF spatial-
only supplement.pdf” describes data model, prediction equa-
tions, EM starting values, EM convergence criteria, and EM
parameter estimation for the case of spatial-only datasets.

ACOS and AIRS datasets: The zip file ”STDF data.zip” con-
tains a folder with the ACOS data and the AIRS data along
with a README.txt file describing the data format.
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